144 research outputs found

    GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC3

    Full text link
    The Scutum complex in the inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R=50,000) near-infrared spectra of five red supergiants in the young Scutum cluster RSGC3. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to measure several tens of atomic and molecular lines that were suitable for determining chemical abundances. By means of spectral synthesis and line equivalent width measurements, we obtained abundances of Fe and iron-peak elements such as Ni, Cr, and Cu, alpha (O, Mg, Si, Ca, Ti), other light elements (C, N, F, Na, Al, and Sc), and some s-process elements (Y, Sr). We found average half-solar iron abundances and solar-scaled [X/Fe] abundance patterns for most of the elements, consistent with a thin-disk chemistry. We found depletion of [C/Fe] and enhancement of [N/Fe], consistent with standard CN burning, and low 12C/13C abundance ratios (between 9 and 11), which require extra-mixing processes in the stellar interiors during the post-main sequence evolution. We also found local standard of rest V(LSR)=106 km/s and heliocentric V(HEL)=90 km/s radial velocities with a dispersion of 2.3 km/s. The inferred radial velocities, abundances, and abundance patterns of RSGC3 are very similar to those previously measured in the other two young clusters of the Scutum complex, RSGC1 and RSGC2, suggesting a common kinematics and chemistry within the Scutum complex

    Lines and continuum sky emission in the near infrared: observational constraints from deep high spectral resolution spectra with GIANO-TNG

    Get PDF
    Aims Determining the intensity of lines and continuum airglow emission in the H-band is important for the design of faint-object infrared spectrographs. Existing spectra at low/medium resolution cannot disentangle the true sky-continuum from instrumental effects (e.g. diffuse light in the wings of strong lines). We aim to obtain, for the first time, a high resolution infrared spectrum deep enough to set significant constraints on the continuum emission between the lines in the H-band. Methods During the second commissioning run of the GIANO high-resolution infrared spectrograph at La Palma Observatory, we pointed the instrument directly to the sky and obtained a deep spectrum that extends from 0.97 to 2.4 micron. Results The spectrum shows about 1500 emission lines, a factor of two more than in previous works. Of these, 80% are identified as OH transitions; half of these are from highly excited molecules (hot-OH component) that are not included in the OH airglow emission models normally used for astronomical applications. The other lines are attributable to O2 or unidentified. Several of the faint lines are in spectral regions that were previously believed to be free of line emission. The continuum in the H-band is marginally detected at a level of about 300 photons/m^2/s/arcsec^2/micron, equivalent to 20.1 AB-mag/arcsec^2. The observed spectrum and the list of observed sky-lines are published in electronic format. Conclusions Our measurements indicate that the sky continuum in the H-band could be even darker than previously believed. However, the myriad of airglow emission lines severely limits the spectral ranges where very low background can be effectively achieved with low/medium resolution spectrographs. We identify a few spectral bands that could still remain quite dark at the resolving power foreseen for VLT-MOONS (R ~6,600).Comment: 7 pages, 4 figures, to be published in Astronomy & Astrophysic

    The fiber-fed preslit of GIANO at T.N.G

    Full text link
    Giano is a Cryogenic Spectrograph located in T.N.G. (Spain) and commisioned in 2013. It works in the range 950-2500 nm with a resolving power of 50000. This instrument was designed and built for direct feeding from the telescope [2]. However, due to constraints imposed on the telescope interfacing during the pre-commissioning phase, it had to be positioned on the rotating building, far from the telescope focus. Therefore, a new interface to the telescope, based on IR-transmitting ZBLAN fibers with 85\mu m core, was developed.Originally designed to work directly at the f/11f/11 nasmyth focus of the telescope, in 2011 it has decided to use a fiber to feed it. The beam from the telescope is focused on a double fiber boundle by a Preslit Optical Bench attached to the Nasmith A interface of the telescope. This Optical Bench contains the fiber feeding system and other important features as a guiding system, a fiber viewer, a fiber feed calibration lamp and a nodding facility between the two fibers. The use of two fibers allow us to have in the echellogram two spectrograms side by side in the same acquisition: one of the star and the other of the sky or simultaneously to have the star and a calibration lamp. Before entering the cryostat the light from the fiber is collectd by a second Preslit Optical Bench attached directly to the Giano cryostat: on this bench the correct f-number to illuminate the cold stop is generated and on the same bench is placed an image slicer to increase the efficiency of the system.Comment: 21 pages, 24 figures, 3 tables. Presented at SPIE Astronomical Telescope + Instrumentation 2014 (Ground-based and Airbone Instrumentation for Astronomy 5, 9147-360). To be published in Proceeding of SPIE Volume 914

    Multi-band high resolution spectroscopy rules out the hot Jupiter BD+20 1790b - First data from the GIARPS Commissioning

    Get PDF
    Context. Stellar activity is currently challenging the detection of young planets via the radial velocity (RV) technique. Aims. We attempt to definitively discriminate the nature of the RV variations for the young active K5 star BD+20 1790, for which visible (VIS) RV measurements show divergent results on the existence of a substellar companion. Methods. We compare VIS data with high precision RVs in the near infrared (NIR) range by using the GIANO - B and IGRINS spectrographs. In addition, we present for the first time simultaneous VIS-NIR observations obtained with GIARPS (GIANO - B and HARPS - N) at Telescopio Nazionale Galileo (TNG). Orbital RVs are achromatic, so the RV amplitude does not change at different wavelengths, while stellar activity induces wavelength-dependent RV variations, which are significantly reduced in the NIR range with respect to the VIS. Results. The NIR radial velocity measurements from GIANO - B and IGRINS show an average amplitude of about one quarter with respect to previously published VIS data, as expected when the RV jitter is due to stellar activity. Coeval multi-band photometry surprisingly shows larger amplitudes in the NIR range, explainable with a mixture of cool and hot spots in the same active region. Conclusions. In this work, the claimed massive planet around BD+20 1790 is ruled out by our data. We exploited the crucial role of multi- wavelength spectroscopy when observing young active stars: thanks to facilities like GIARPS that provide simultaneous observations, this method can reach its maximum potential.Comment: 12 pages, 7 figure
    corecore