5,533 research outputs found

    Information Content of Polarization Measurements

    Full text link
    Information entropy is applied to the state of knowledge of reaction amplitudes in pseudoscalar meson photoproduction, and a scheme is developed that quantifies the information content of a measured set of polarization observables. It is shown that this definition of information is a more practical measure of the quality of a set of measured observables than whether the combination is a mathematically complete set. It is also shown that when experimental uncertainty is introduced, complete sets of measurements do not necessarily remove ambiguities, and that experiments should strive to measure as many observables as practical in order to extract amplitudes.Comment: 19 pages, 4 figures; figures updated, minor textual correction

    Bayesian model selection for electromagnetic kaon production on the nucleon

    Get PDF
    We present the results of a Bayesian analysis of a Regge model to describe the background contribution for K+ Lambda and K+ Sigma0 photoproduction. The model is based on the exchange of K+(494) and K*+(892) trajectories in the t-channel. We utilise the Bayesian evidence Z to determine the best model variant for each channel. The Bayesian evidence integrals were calculated using the Nested Sampling algorithm. For different prior widths, we find decisive Bayesian evidence (\Delta ln Z ~ 24) for a K+ Lambda photoproduction Regge model with a positive vector coupling and a negative tensor coupling constant for the K*+(892) trajectory, and a rotating phase factor for both trajectories. Using the chi^2 minimisation method, one could not draw this conclusion from the same dataset. For the K+ Sigma0 photoproduction Regge model, on the other hand, the difference between the evidence integrals is insufficient to pinpoint one model variant.Comment: 13 pages, 4 figure

    Electromagnetic KY production from the proton in a Regge-plus-resonance approach

    Get PDF
    A Regge-plus-resonance (RPR) description of the p(\gamma,K)Y and p(e,e'K)Y processes (Y = \Lambda, \Sigma^{0,+}) is presented. The proposed reaction amplitude consists of Regge-trajectory exchanges in the t channel, supplemented with a limited selection of s-channel resonance diagrams. The RPR framework contains a considerably smaller number of free parameters than a typical effective-Lagrangian model. Nevertheless, it provides an acceptable overall description of the photo- and electroproduction observables over an extensive photon energy range. It is shown that the electroproduction response functions and polarization observables are particularly useful for fine-tuning both the background and resonance parameters.Comment: 4 pages, 3 figures, Proceedings for IX International Conference on Hypernuclear and Strange Particle Physics (HYP2006), October 10-14 2006, Main

    Polarization observables in the longitudinal basis for pseudo-scalar meson photoproduction using a density matrix approach

    Full text link
    The complete expression for the intensity in pseudo-scalar meson photoproduction with a polarized beam, target, and recoil baryon is derived using a density matrix approach that offers great economy of notation. A Cartesian basis with spins for all particles quantized along a single direction, the longitudinal beam direction, is used for consistency and clarity in interpretation. A single spin-quantization axis for all particles enables the amplitudes to be written in a manifestly covariant fashion with simple relations to those of the well-known CGLN formalism. Possible sign discrepancies between theoretical amplitude-level expressions and experimentally measurable intensity profiles are dealt with carefully. Our motivation is to provide a coherent framework for coupled-channel partial-wave analysis of several meson photoproduction reactions, incorporating recently published and forthcoming polarization data from Jefferson Lab.Comment: 11 pages, 2 figure

    Differential cross section analysis in kaon photoproduction using associated legendre polynomials

    Full text link
    Angular distributions of differential cross sections from the latest CLAS data sets \cite{bradford}, for the reaction γ+p→K++Λ{\gamma}+p {\to} K^{+} + {\Lambda} have been analyzed using associated Legendre polynomials. This analysis is based upon theoretical calculations in Ref. \cite{fasano} where all sixteen observables in kaon photoproduction can be classified into four Legendre classes. Each observable can be described by an expansion of associated Legendre polynomial functions. One of the questions to be addressed is how many associated Legendre polynomials are required to describe the data. In this preliminary analysis, we used data models with different numbers of associated Legendre polynomials. We then compared these models by calculating posterior probabilities of the models. We found that the CLAS data set needs no more than four associated Legendre polynomials to describe the differential cross section data. In addition, we also show the extracted coefficients of the best model.Comment: Talk given at APFB08, Depok, Indonesia, August, 19-23, 200

    Simulating a dual beam combiner at SUSI for narrow-angle astrometry

    Full text link
    The Sydney University Stellar Interferometer (SUSI) has two beam combiners, i.e. the Precision Astronomical Visible Observations (PAVO) and the Microarcsecond University of Sydney Companion Astrometry (MUSCA). The primary beam combiner, PAVO, can be operated independently and is typically used to measure properties of binary stars of less than 50 milliarc- sec (mas) separation and the angular diameters of single stars. On the other hand, MUSCA was recently installed and must be used in tandem with the for- mer. It is dedicated for microarcsecond precision narrow-angle astrometry of close binary stars. The performance evaluation and development of the data reduction pipeline for the new setup was assisted by an in-house computer simulation tool developed for this and related purposes. This paper describes the framework of the simulation tool, simulations carried out to evaluate the performance of each beam combiner and the expected astrometric precision of the dual beam combiner setup, both at SUSI and possible future sites.Comment: 28 pages, 23 figures, accepted for publication in Experimental Astronomy. The final publication is available at http://link.springer.co

    The Angular Diameter and Fundamental Parameters of Sirius A

    Full text link
    The Sydney University Stellar Interferometer (SUSI) has been used to make a new determination of the angular diameter of Sirius A. The observations were made at an effective wavelength of 694.1 nm and the new value for the limb-darkened angular diameter is 6.048 +/- 0.040mas (+/-0.66%). This new result is compared with previous measurements and is found to be in excellent agreement with a conventionally calibrated measurement made with the European Southern Observatory's Very Large Telescope Interferometer (VLTI) at 2.176 microns (but not with a second globally calibrated VLTI measurement). A weighted mean of the SUSI and first VLTI results gives the limb-darkened angular diameter of Sirius A as 6.041 +/- 0.017mas (+/-0.28%). Combination with the Hipparcos parallax gives the radius equal to 1.713 +/- 0.009R_sun. The bolometric flux has been determined from published photometry and spectrophotometry and, combined with the angular diameter, yields the emergent flux at the stellar surface equal to (5.32+/- 0.14)x10^8 Wm^-2 and the effective temperature equal to 9845 +/- 64 K. The luminosity is 24.7 +/- 0.7 L_sun.Comment: Accepted for publication in PAS

    Synthesizing Imperative Programs from Examples Guided by Static Analysis

    Full text link
    We present a novel algorithm that synthesizes imperative programs for introductory programming courses. Given a set of input-output examples and a partial program, our algorithm generates a complete program that is consistent with every example. Our key idea is to combine enumerative program synthesis and static analysis, which aggressively prunes out a large search space while guaranteeing to find, if any, a correct solution. We have implemented our algorithm in a tool, called SIMPL, and evaluated it on 30 problems used in introductory programming courses. The results show that SIMPL is able to solve the benchmark problems in 6.6 seconds on average.Comment: The paper is accepted in Static Analysis Symposium (SAS) '17. The submission version is somewhat different from the version in arxiv. The final version will be uploaded after the camera-ready version is read
    • …
    corecore