898 research outputs found

    High-energy γ\gamma-ray emission from GRBs

    Full text link
    GRBs are nowadays a rather well understood phenomenon in the soft (KeV-MeV) γ\gamma-ray energy band, while only a few GRBs have been observed at high photon energies (E_{\gamma} \ut > 1 GeV). It is also widely recognized that GRBs accelerate protons to relativistic energies and that dense media are often present nearby the sources. Within this framework we compute in detail the high-energy γ\gamma-ray flux from the decay of neutral pions produced through the interaction of accelerate protons with nucleons in the surrounding medium. We also take into account the local and intergalactic γ\gamma-ray absorption. The presence of magnetic fields around the GRB sources causes the deflection of the accelerated protons and so a temporal spread of the produced high-energy γ\gamma-rays with respect to the signal in the soft γ\gamma-ray band. Moreover, we analyze the possibility to detect the γ\gamma-ray signal in the GeV-TeV energy range by the ARGO detector under construction in Tibet.Comment: 9 pages, 7 figures, abstract shortened, to appear in Astronomy and Astrophysic

    Binary brown dwarfs in the galactic halo?

    Get PDF
    Microlensing events towards the Large Magellanic Cloud entail that a sizable fraction of dark matter is in the form of MACHOs (Massive Astrophysical Compact Halo Objects), presumably located in the halo of the Galaxy. Within the present uncertainties, brown dwarfs are a viable candidate for MACHOs. Various reasons strongly suggest that a large amount of MACHOs should actually consist of binary brown dwarfs. Yet, this circumstance looks in flat contradiction with the fact that MACHOs have been detected as unresolved objects so far. We show that such an apparent paradox does not exist within a model in which MACHOs are clumped into dark clusters along with cold molecular clouds, since dynamical friction on these clouds makes binary brown dwarfs very close. Moreover, we argue that future microlensing experiments with a more accurate photometric observation can resolve binary brown dwarfs.Comment: Latex file. To appear in Mont. Not. R. Astr. So

    Gamma ray emission from a baryonic dark halo

    Full text link
    A recent re-analysis of EGRET data by Dixon et al. has led to the discovery of a statistically significant diffuse γ\gamma-ray emission from the galactic halo. We show that this emission can naturally be accounted for within a previously-proposed model for baryonic dark matter, according to which dark clusters of brown dwarfs and cold self-gravitating H2H_2 clouds populate the outer galactic halo and can show up in microlensing observations. Basically, cosmic-ray protons in the galactic halo scatter on the clouds clumped into dark clusters, giving rise to the observed γ\gamma-ray flux. We derive maps for the corresponding intensity distribution, which turn out to be in remarkably good agreement with those obtained by Dixon et al. We also address future prospects to test our predictions.Comment: 22 pages, 2 figures, slightly shortened version. to appear in New Journal of Physic

    MACHOs as brown dwarfs

    Get PDF
    Recent observations of microlensing events in the Large Magellanic Cloud suggest that a sizable fraction of the galactic halo is in the form of Massive Astrophysical Compact Halo Objects (MACHOs). Although the average MACHO mass is presently poorly known, the value 0.1M\sim 0.1 M_{\odot} looks as a realistic estimate, thereby implying that brown dwarfs are a viable and natural candidate for MACHOs. We describe a scenario in which dark clusters of MACHOs and cold molecular clouds (mainly of H2H_2) naturally form in the halo at galactocentric distances larger than 10-20 kpc. Moreover, we discuss various experimental tests of this picture.Comment: To appear in the proceedings of the workshop DM-ITALIA-9

    Observational Features of Black Holes

    Full text link
    Recently considered a very attracting possibility to detect retro-MACHOs, i.e. retro-images of the Sun by a Schwarzschild black hole. In this paper we discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters analyzing these forms of mirages. In some sense that is a manifestation of gravitational lens effect in the strong gravitational field near black hole horizon and a generalization of the retro-gravitational lens phenomenon. We analyze the case of a Kerr black hole rotating at arbitrary speed for some selected positions of a distant observer with respect to the equatorial plane of a Kerr black hole. We discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters analyzing these forms of mirages. Some time ago suggested to search shadows at the Galactic Center. In this paper we present the boundaries for shadows calculated numerically. We also propose to use future radio interferometer RADIOASTRON facilities to measure shapes of mirages (glories) and to evaluate the black hole spin as a function of the position angle of a distant observer.Comment: Plenary talk presented at Workshop on High Energy Physics&Field Theory (Protvino, Russia, 2004

    Signatures of rotating binaries in micro-lensing experiments

    Full text link
    Gravitational microlensing offers a powerful method with which to probe a variety of binary-lens systems, as the binarity of the lens introduces deviations from the typical (single-lens) Paczy\'nski behaviour in the event light curves. Generally, a static binary lens is considered to fit the observed light curve and, when the orbital motion is taken into account, an oversimplified model is usually employed. In this paper, we treat the binary-lens motion in a realistic way and focus on simulated events that are fitted well by a Paczy\'nski curve. We show that an accurate timing analysis of the residuals (calculated with respect to the best-fitting Paczy\'nski model) is usually sufficient to infer the orbital period of the binary lens. It goes without saying that the independently estimated period may be used to further constrain the orbital parameters obtained by the best-fitting procedure, which often gives degenerate solutions. We also present a preliminary analysis of the event OGLE-2011-BLG-1127 / MOA-2011-BLG-322, which has been recognized to be the result of a binary lens. The period analysis results in a periodicity of \simeq 12 days, which confirms the oscillation of the observed data around the best-fitting model. The estimated periodicity is probably associated with an intrinsic variability of the source star, and therefore there is an opportunity to use this technique to investigate either the intrinsic variability of the source or the effects induced by the binary-lens orbital motion.Comment: In press on MNRAS, 2014. 8 pages, 4 figures. On-line material available on the Journal web-pag

    MHOs and molecular clouds in dark galactic halos

    Get PDF
    We outline a scenario in which dark clusters of Massive Halo Objects (MHOs) and molecular clouds form in the halo at galactocentric distances larger than 10–20 kpc, provided baryons are a major constituent of the halo. Possible signatures of the presence of molecular clouds in our galaxy are discussed. We also discuss how molecular clouds as well as MHOs can be observed directly in the nearby M31 galaxy

    Observing molecular hydrogen clouds and dark massive objects in galactic halos

    Get PDF
    Molecular hydrogen clouds can contribute substantially to the galactic halo< dark matter and may lead to the birth of massive halo objects (MHOs) observed indirectly by microlensing. We present a method to detect these molecular clouds in the halo of M31 using the Doppler shift effect. We also consider the possibility to directly observe MHOs in the halo of M31 via their infrared emission.Comment: 7 pages, postscript file, to appear in Astron. & Astrophy
    corecore