144 research outputs found

    Fingering Instability in Combustion

    Full text link
    A thin solid (e.g., paper), burning against an oxidizing wind, develops a fingering instability with two decoupled length scales. The spacing between fingers is determined by the P\'eclet number (ratio between advection and diffusion). The finger width is determined by the degree two dimensionality. Dense fingers develop by recurrent tip splitting. The effect is observed when vertical mass transport (due to gravity) is suppressed. The experimental results quantitatively verify a model based on diffusion limited transport

    Hydrodynamics of the Kuramoto-Sivashinsky Equation in Two Dimensions

    Full text link
    The large scale properties of spatiotemporal chaos in the 2d Kuramoto-Sivashinsky equation are studied using an explicit coarse graining scheme. A set of intermediate equations are obtained. They describe interactions between the small scale (e.g., cellular) structures and the hydrodynamic degrees of freedom. Possible forms of the effective large scale hydrodynamics are constructed and examined. Although a number of different universality classes are allowed by symmetry, numerical results support the simplest scenario, that being the KPZ universality class.Comment: 4 pages, 3 figure

    Biscale Chaos in Propagating Fronts

    Full text link
    The propagating chemical fronts found in cubic autocatalytic reaction-diffusion processes are studied. Simulations of the reaction-diffusion equation near to and far from the onset of the front instability are performed and the structure and dynamics of chemical fronts are studied. Qualitatively different front dynamics are observed in these two regimes. Close to onset the front dynamics can be characterized by a single length scale and described by the Kuramoto-Sivashinsky equation. Far from onset the front dynamics exhibits two characteristic lengths and cannot be modeled by this amplitude equation. An amplitude equation is proposed for this biscale chaos. The reduction of the cubic autocatalysis reaction-diffusion equation to the Kuramoto-Sivashinsky equation is explicitly carried out. The critical diffusion ratio delta, where the planar front loses its stability to transverse perturbations, is determined and found to be delta=2.300.Comment: Typeset using RevTeX, fig.1 and fig.4 are not available, mpeg simulations are at http://www.chem.utoronto.ca/staff/REK/Videos/front/front.htm

    The Sivashinsky equation for corrugated flames in the large-wrinkle limit

    Full text link
    Sivashinsky's (1977) nonlinear integro-differential equation for the shape of corrugated 1-dimensional flames is ultimately reducible to a 2N-body problem, involving the 2N complex poles of the flame slope. Thual, Frisch & Henon (1985) derived singular linear integral equations for the pole density in the limit of large steady wrinkles (N1)(N \gg 1), which they solved exactly for monocoalesced periodic fronts of highest amplitude of wrinkling and approximately otherwise. Here we solve those analytically for isolated crests, next for monocoalesced then bicoalesced periodic flame patterns, whatever the (large-) amplitudes involved. We compare the analytically predicted pole densities and flame shapes to numerical results deduced from the pole-decomposition approach. Good agreement is obtained, even for moderately large Ns. The results are extended to give hints as to the dynamics of supplementary poles. Open problems are evoked

    Nonlinear equation for curved stationary flames

    Get PDF
    A nonlinear equation describing curved stationary flames with arbitrary gas expansion θ=ρfuel/ρburnt\theta = \rho_{{\rm fuel}}/\rho_{{\rm burnt}}, subject to the Landau-Darrieus instability, is obtained in a closed form without an assumption of weak nonlinearity. It is proved that in the scope of the asymptotic expansion for θ1,\theta \to 1, the new equation gives the true solution to the problem of stationary flame propagation with the accuracy of the sixth order in θ1.\theta - 1. In particular, it reproduces the stationary version of the well-known Sivashinsky equation at the second order corresponding to the approximation of zero vorticity production. At higher orders, the new equation describes influence of the vorticity drift behind the flame front on the front structure. Its asymptotic expansion is carried out explicitly, and the resulting equation is solved analytically at the third order. For arbitrary values of θ,\theta, the highly nonlinear regime of fast flow burning is investigated, for which case a large flame velocity expansion of the nonlinear equation is proposed.Comment: 29 pages 4 figures LaTe

    Hopf's last hope: spatiotemporal chaos in terms of unstable recurrent patterns

    Full text link
    Spatiotemporally chaotic dynamics of a Kuramoto-Sivashinsky system is described by means of an infinite hierarchy of its unstable spatiotemporally periodic solutions. An intrinsic parametrization of the corresponding invariant set serves as accurate guide to the high-dimensional dynamics, and the periodic orbit theory yields several global averages characterizing the chaotic dynamics.Comment: Latex, ioplppt.sty and iopl10.sty, 18 pages, 11 PS-figures, compressed and encoded with uufiles, 170 k

    Amplitude equations for systems with long-range interactions

    Full text link
    We derive amplitude equations for interface dynamics in pattern forming systems with long-range interactions. The basic condition for the applicability of the method developed here is that the bulk equations are linear and solvable by integral transforms. We arrive at the interface equation via long-wave asymptotics. As an example, we treat the Grinfeld instability, and we also give a result for the Saffman-Taylor instability. It turns out that the long-range interaction survives the long-wave limit and shows up in the final equation as a nonlocal and nonlinear term, a feature that to our knowledge is not shared by any other known long-wave equation. The form of this particular equation will then allow us to draw conclusions regarding the universal dynamics of systems in which nonlocal effects persist at the level of the amplitude description.Comment: LaTeX source, 12 pages, 4 figures, accepted for Physical Review

    Non-linear model equation for three-dimensional Bunsen flames

    No full text
    The non linear description of laminar premixed flames has been very successful, because of the existence of model equations describing the dynamics of these flames. The Michelson Sivashinsky equation is the most well known of these equations, and has been used in different geometries, including three-dimensional quasi-planar and spherical flames. Another interesting model, usually known as the Frankel equation,which could in principle take into account large deviations of the flame front, has been used for the moment only for two-dimensional expanding and Bunsen flames. We report here for the first time numerical solutions of this equation for three-dimensional flames

    Bottleneck effects in turbulence: Scaling phenomena in r- versus p-space

    Get PDF
    We (analytically) calculate the energy spectrum corresponding to various experimental and numerical turbulence data analyzed by Benzi et al.. We find two bottleneck phenomena: While the local scaling exponent ζr(r)\zeta_r(r) of the structure function decreases monotonically, the local scaling exponent ζp(p)\zeta_p(p) of the corresponding spectrum has a minimum of ζp(pmin)0.45\zeta_p(p_{min})\approx 0.45 at pmin(10η)1p_{min}\approx (10 \eta)^{-1} and a maximum of ζp(pmax)0.77\zeta_p(p_{max})\approx 0.77 at pmax8L1p_{max}\approx 8 L^{-1}. A physical argument starting from the constant energy flux in p--space reveals the general mechanism underlying the energy pileups at both ends of the p--space scaling range. In the case studied here, they are induced by viscous dissipation and the reduced spectral strength on the scale of the system size, respectively.Comment: 9 pages, 3figures on reques

    Large Scale Structures a Gradient Lines: the case of the Trkal Flow

    Full text link
    A specific asymptotic expansion at large Reynolds numbers (R)for the long wavelength perturbation of a non stationary anisotropic helical solution of the force less Navier-Stokes equations (Trkal solutions) is effectively constructed of the Beltrami type terms through multi scaling analysis. The asymptotic procedure is proved to be valid for one specific value of the scaling parameter,namely for the square root of the Reynolds number (R).As a result large scale structures arise as gradient lines of the energy determined by the initial conditions for two anisotropic Beltrami flows of the same helicity.The same intitial conditions determine the boundaries of the vortex-velocity tubes, containing both streamlines and vortex linesComment: 27 pages, 2 figure
    corecore