86 research outputs found

    HIF2α reduces growth rate but promotes angiogenesis in a mouse model of neuroblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIF2α/EPAS1 is a hypoxia-inducible transcription factor involved in catecholamine homeostasis, vascular remodelling, physiological angiogenesis and adipogenesis. It is overexpressed in many cancerous tissues, but its exact role in tumour progression remains to be clarified.</p> <p>Methods</p> <p>In order to better establish its function in tumourigenesis and tumour angiogenesis, we have stably transfected mouse neuroblastoma N1E-115 cells with the native form of HIF2α or with its dominant negative mutant, HIF2α (1–485) and studied their phenotype <it>in vitro </it>and <it>in vivo</it>.</p> <p>Results</p> <p><it>In vitro </it>studies reveal that HIF2α induces neuroblastoma cells hypertrophy and decreases their proliferation rate, while its inactivation by the HIF2α (1–485) mutant leads to a reduced cell size, associated with an accelerated proliferation. However, our <it>in vivo </it>experiments show that subcutaneous injection of cells overexpressing HIF2α into syngenic mice, leads to the formation of tumour nodules that grow slower than controls, but that are well structured and highly vascularized. In contrast, HIF2α (1–485)-expressing neuroblastomas grow fast, but are poorly vascularized and quickly tend to extended necrosis.</p> <p>Conclusion</p> <p>Together, our data reveal an unexpected combination between an antiproliferative and a pro-angiogenic function of HIF2α that actually seems to be favourable to the establishment of neuroblastomas <it>in vivo</it>.</p

    Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data

    Get PDF
    High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary to confirm the role of selection-nominated candidate genes and gene regions in adaptation to altitude

    T-cell responses to human papillomavirus type 16 among women with different grades of cervical neoplasia

    Get PDF
    Infection with high-risk genital human papillomavirus (HPV) types is a major risk factor for the development of cervical intraepithelial neoplasia (CIN) and invasive cervical carcinoma. The design of effective immunotherapies requires a greater understanding of how HPV-specific T-cell responses are involved in disease clearance and/or progression. Here, we have investigated T-cell responses to five HPV16 proteins (E6, E7, E4, L1 and L2) in women with CIN or cervical carcinoma directly ex vivo. T-cell responses were observed in the majority (78%) of samples. The frequency of CD4+ responders was far lower among those with progressive disease, indicating that the CD4+ T-cell response might be important in HPV clearance. CD8+ reactivity to E6 peptides was dominant across all disease grades, inferring that E6-specific CD8+ T cells are not vitally involved in disease clearance. T-cell responses were demonstrated in the majority (80%) of cervical cancer patients, but are obviously ineffective. Our study reveals significant differences in HPV16 immunity during progressive CIN. We conclude that the HPV-specific CD4+ T-cell response should be an important consideration in immunotherapy design, which should aim to target preinvasive disease

    Rescue of hypoxia-inducible factor-1alpha-deficient tumor growth by wild-type cells is independent of vascular endothelial growth factor.

    No full text
    In tumors, rapid cell proliferation associated with deficient vascularization leads to areas of hypoxia.Tumor hypoxia has direct consequences on clinical and prognostic parameters and is a potential therapeutic target. The hypoxic response depends critically on hypoxia-inducible factor-1alpha (HIF-1alpha) in pathological (e.g., tumorigenesis) as well as physiological (e.g., development and wound healing) processes. By s.c. injection of HIF-1alpha(-/-) embryonic stem (ES) cells in nude mice, we were able to demonstrate the role of HIF-1alpha in cell differentiation of teratocarcinomas. HIF-1alpha(+/+) tumors grow fast and preferentially form neuronal tissue, whereas HIF-1alpha(-/-) tumors show delayed growth and favorably form mesenchyme-derived tissue. Mixing wild-type and HIF-1alpha(-/-) ES cells in the same tumor at a ratio as low as 1:100, we showed that HIF-1alpha(+/+) cells can rescue the growth of mixed tumors although these tumors are not significantly different phenotypically or genotypically from the original HIF-1alpha(-/-) tumors. Interestingly, these results are not restricted to teratocarcinomas: they were confirmed with mixtures of Hepa1/Hepa1C4 cells (where HIF-1beta is mutated), demonstrating that growth changes are not related to differences in differentiation observed within teratocarcinomas. We also showed that despite lower mRNA expression, vascular endothelial growth factor protein status in HIF-1alpha(-/-) and mixed tumors does not significantly differ from the HIF-1alpha(+/+) tumors. Moreover, we demonstrated that tumor vascularization remains proportional to vascular endothelial growth factor protein levels, but that hypoxic up-regulation of this growth factor is not the decisive factor influencing tumor growth. Differences in levels of apoptosis are not responsible for alteration in growth because poly(ADP-ribose) polymerase cleavage, a hallmark of the apoptotic process, was similar in HIF-1alpha(+/+), HIF-1alpha(-/-), and mixed tumors. Our data demonstrate that the HIF-1alpha-dependent response of a few cells is capable of sustaining the growth of the whole tumor, probably through the secretion of factors up-regulated under low oxygen conditions
    corecore