9 research outputs found

    The 2018 Lake Louise Acute Mountain Sickness Score.

    Get PDF
    Roach, Robert C., Peter H. Hackett, Oswald Oelz, Peter Bärtsch, Andrew M. Luks, Martin J. MacInnis, J. Kenneth Baillie, and The Lake Louise AMS Score Consensus Committee. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt Med Biol 19:1-4, 2018.- The Lake Louise Acute Mountain Sickness (AMS) scoring system has been a useful research tool since first published in 1991. Recent studies have shown that disturbed sleep at altitude, one of the five symptoms scored for AMS, is more likely due to altitude hypoxia per se, and is not closely related to AMS. To address this issue, and also to evaluate the Lake Louise AMS score in light of decades of experience, experts in high altitude research undertook to revise the score. We here present an international consensus statement resulting from online discussions and meetings at the International Society of Mountain Medicine World Congress in Bolzano, Italy, in May 2014 and at the International Hypoxia Symposium in Lake Louise, Canada, in February 2015. The consensus group has revised the score to eliminate disturbed sleep as a questionnaire item, and has updated instructions for use of the score

    Effects of Time of Day and Sleep Deprivation on Motorcycle-Driving Performance

    Get PDF
    The aim of this study was to investigate whether motorcycle handling capabilities – measured by means of the efficiency of emergency manoeuvres – were dependent on prior sleep deprivation and time of day. Twelve male participants voluntarily took part in four test sessions, starting at 6 a.m., 10 a.m., 2 p.m., and 6 p.m., following a night either with or without sleep. Each test session comprised temperature and sleepiness measurements, before three different types of motorcycling tests were initiated: (1) stability in straight ahead riding at low speed (in “slow motion” mode and in “brakes and clutch” mode), (2) emergency braking and (3) crash avoidance tasks performed at 20 kph and 40 kph. The results indicate that motorcycle control at low speed depends on time of day, with an improvement in performance throughout the day. Emergency braking performance is affected at both speeds by time of day, with poorer performance (longer total stopping distance, reaction time and braking distance) in the morning, and also by sleep deprivation, from measurements obtained at 40 kph (incorrect initial speed). Except for a tendency observed after the sleepless night to deviate from the initial speed, it seems that crash avoidance capabilities are quite unaffected by the two disturbance factors. Consequently, some motorcycle handling capabilities (stability at low speed and emergency braking) change in the same way as the diurnal fluctuation observed in body temperature and sleepiness, whereas for others (crash avoidance) the participants were able to maintain their initial performance level despite the high levels of sleepiness recorded after a sleepless night. Motorcycle riders have to be aware that their handling capabilities are limited in the early morning and/or after sleep deprivation. Both these situations can increase the risk of falls and of being involved in a road accident
    corecore