11,114 research outputs found

    Migration and Accretion of Protoplanets in 2D and 3D Global Hydrodynamical Simulations

    Get PDF
    Planet evolution is tightly connected to the dynamics of both distant and close disk material. Hence, an appropriate description of disk-planet interaction requires global and high resolution computations, which we accomplish by applying a Nested-Grid method. Through simulations in two and three dimensions, we investigate how migration and accretion are affected by long and short range interactions. For small mass objects, 3D models provide longer growth and migration time scales than 2D ones do, whereas time lengths are comparable for large mass planets.Comment: 4 pages, 4 figures; to appear in the Conference Proceedings of "Scientific Frontiers in Research on Extrasolar Planets

    Effective medium theories for irregular fluffy structures: aggregation of small particles

    Full text link
    We study the extinction efficiencies as well as scattering properties of particles of different porosity. Calculations are performed for porous pseudospheres with small size (Rayleigh) inclusions using the discrete dipole approximation. Five refractive indices of materials covering the range from 1.20+0.00i1.20+0.00i to 1.75+0.58i1.75+0.58i were selected. They correspond to biological particles, dirty ice, silicate, amorphous carbon and soot in the visual part of spectrum. We attempt to describe the optical properties of such particles using Lorenz-Mie theory and a refractive index found from some effective medium theory (EMT) assuming the particle is homogeneous. We refer to this as the effective model. It is found that the deviations are minimal when utilizing the EMT based on the Bruggeman mixing rule. Usually the deviations in extinction factor do not exceed ∼5\sim 5% for particle porosity P=0−0.9{\cal P}=0 - 0.9 and size parameters x_{\rm porous} = 2 \pi r_{\rm s, porous}/\lambda \la 25. The deviations are larger for scattering and absorption efficiencies and smaller for particle albedo and asymmetry parameter. Our calculations made for spheroids confirm these conclusions. Preliminary consideration shows that the effective model represents the intensity and polarization of radiation scattered by fluffy aggregates quite well. Thus, the effective models of spherical and non-spherical particles can be used to significantly simplify computations of the optical properties of aggregates containing only Rayleigh inclusions.Comment: 24 pages, 9 figures, accepted for publication in Applied Optic

    The Polarium at Munich Zoo

    Get PDF

    Quasiclassical theory for the superconducting proximity effect in Dirac materials

    Full text link
    We derive the quasiclassical non-equilibrium Eilenberger and Usadel equations to first order in quantities small compared to the Fermi energy, valid for Dirac edge and surface electrons with spin-momentum locking, as relevant for topological insulators. We discuss in detail several of the key technical points and assumptions of the derivation, and provide a Riccati-parametrization of the equations. Solving first the equilibrium equations for S/N and S/F bilayers and Josephson junctions, we study the superconducting proximity effect in Dirac materials. Similarly to related works, we find that the effect of an exchange field depends strongly on the direction of the field. Only components normal to the transport direction lead to attenuation of the Cooper pair wavefunction inside the F. Fields parallel to the transport direction lead to phase-shifts in the dependence on the superconducting phase difference for both the charge current and density of states in an S/F/S-junction. Moreover, we compute the differential conductance in S/N and S/F bilayers with an applied voltage bias, and determine the dependence on the length of the N and F regions and the exchange field.Comment: 13 pages, 5 figures. Accepted for publication in Phys. Rev.

    Plasma catecholamines during activation of the sympathetic nervous system in a patient with Shy-Drager syndrome.

    Get PDF
    Plasma catecholamines and circulation parameters were studied in a patient with a Shy-Drager syndrome. Basal values of free noradrenaline and dopamine were within the normal range, whereas the adrenaline level was decreased. The response of plasma catecholamines to different kinds of physical activity was pathological. The inability to maintain elevated catecholamine levels during prolonged activity corresponded to impaired circulatory regulation and may provide an additional tool for diagnosis and monitoring of the Shy-Drager syndrome
    • …
    corecore