2,239 research outputs found
The heat kernel expansion for the electromagnetic field in a cavity
We derive the first six coefficients of the heat kernel expansion for the
electromagnetic field in a cavity by relating it to the expansion for the
Laplace operator acting on forms. As an application we verify that the
electromagnetic Casimir energy is finite.Comment: 12 page
Impact Ionization and Hot-Electron Injection Derived Consistently from Boltzmann Transport
We develop a quantitative model of the impact-ionizationand hot-electron–injection processes in MOS devices from first principles. We begin by modeling hot-electron transport in the drain-to-channel depletion region using the spatially varying Boltzmann transport equation, and we analytically find a self consistent distribution function in a two step process. From the electron distribution function, we calculate the probabilities of impact ionization and hot-electron injection as functions of channel current, drain voltage, and floating-gate voltage. We compare our analytical model results to measurements in long-channel devices. The model simultaneously fits both the hot-electron- injection and impact-ionization data. These analytical results yield an energydependent impact-ionization collision rate that is consistent with numerically calculated collision rates reported in the literature
Induced mass in N=2 super Yang-Mills theories
The masses of the matter fields of N=2 Super-Yang-Mills theories can be
defined as parameters of deformed supersymmetry transformations. The
formulation used involves central charges for the matter fields. The explicit
form of the deformed supersymmetry transformations and of the invariant
Lagrangian in presence of the gauge supermultiplet are constructed. This works
generalizes a former one, due to the same authors, which presented the free
matter case.Comment: 15 pages, Late
Shot noise of a quantum dot measured with GHz stub impedance matching
The demand for a fast high-frequency read-out of high impedance devices, such
as quantum dots, necessitates impedance matching. Here we use a resonant
impedance matching circuit (a stub tuner) realized by on-chip superconducting
transmission lines to measure the electronic shot noise of a carbon nanotube
quantum dot at a frequency close to 3 GHz in an efficient way. As compared to
wide-band detection without impedance matching, the signal to noise ratio can
be enhanced by as much as a factor of 800 for a device with an impedance of 100
k. The advantage of the stub resonator concept is the ease with which
the response of the circuit can be predicted, designed and fabricated. We
further demonstrate that all relevant matching circuit parameters can reliably
be deduced from power reflectance measurements and then used to predict the
power transmission function from the device through the circuit. The shot noise
of the carbon nanotube quantum dot in the Coulomb blockade regime shows an
oscillating suppression below the Schottky value of , as well an
enhancement in specific regions.Comment: 6 pages, 4 figures, supplementar
Measurements of a Quantum Dot with an Impedance-Matching On-Chip LC Resonator at GHz Frequencies
We report the realization of a bonded-bridge on-chip superconducting coil and
its use in impedance-matching a highly ohmic quantum dot (QD) to a
measurement setup. The coil, modeled as a lumped-element resonator, is
more compact and has a wider bandwidth than resonators based on coplanar
transmission lines (e.g. impedance transformers and stub tuners) at
potentially better signal-to-noise ratios. In particular for measurements of
radiation emitted by the device, such as shot noise, the 50 larger
bandwidth reduces the time to acquire the spectral density. The resonance
frequency, close to 3.25 GHz, is three times higher than that of the one
previously reported wire-bonded coil. As a proof of principle, we fabricated an
circuit that achieves impedance-matching to a load
and validate it with a load defined by a carbon nanotube QD of which we measure
the shot noise in the Coulomb blockade regime.Comment: 7 pages, 6 figure
Electrolyte gate dependent high-frequency measurement of graphene field-effect transistor for sensing applications
We performed radiofrequency (RF) reflectometry measurements at 2.4 GHz on
electrolyte-gated graphene field-effect transistors (GFETs) utilizing a tunable
stub-matching circuit for impedance matching. We demonstrate that the gate
voltage dependent RF resistivity of graphene can be deduced even in the
presence of the electrolyte which is in direct contact with the graphene layer.
The RF resistivity is found to be consistent with its DC counterpart in the
full gate voltage range. Furthermore, in order to access the potential of
high-frequency sensing for applications, we demonstrate time-dependent gating
in solution with nanosecond time resolution.Comment: 14 pages, 4 figure
- …
