2,239 research outputs found

    The heat kernel expansion for the electromagnetic field in a cavity

    Full text link
    We derive the first six coefficients of the heat kernel expansion for the electromagnetic field in a cavity by relating it to the expansion for the Laplace operator acting on forms. As an application we verify that the electromagnetic Casimir energy is finite.Comment: 12 page

    Impact Ionization and Hot-Electron Injection Derived Consistently from Boltzmann Transport

    Get PDF
    We develop a quantitative model of the impact-ionizationand hot-electron–injection processes in MOS devices from first principles. We begin by modeling hot-electron transport in the drain-to-channel depletion region using the spatially varying Boltzmann transport equation, and we analytically find a self consistent distribution function in a two step process. From the electron distribution function, we calculate the probabilities of impact ionization and hot-electron injection as functions of channel current, drain voltage, and floating-gate voltage. We compare our analytical model results to measurements in long-channel devices. The model simultaneously fits both the hot-electron- injection and impact-ionization data. These analytical results yield an energydependent impact-ionization collision rate that is consistent with numerically calculated collision rates reported in the literature

    Induced mass in N=2 super Yang-Mills theories

    Full text link
    The masses of the matter fields of N=2 Super-Yang-Mills theories can be defined as parameters of deformed supersymmetry transformations. The formulation used involves central charges for the matter fields. The explicit form of the deformed supersymmetry transformations and of the invariant Lagrangian in presence of the gauge supermultiplet are constructed. This works generalizes a former one, due to the same authors, which presented the free matter case.Comment: 15 pages, Late

    Shot noise of a quantum dot measured with GHz stub impedance matching

    Full text link
    The demand for a fast high-frequency read-out of high impedance devices, such as quantum dots, necessitates impedance matching. Here we use a resonant impedance matching circuit (a stub tuner) realized by on-chip superconducting transmission lines to measure the electronic shot noise of a carbon nanotube quantum dot at a frequency close to 3 GHz in an efficient way. As compared to wide-band detection without impedance matching, the signal to noise ratio can be enhanced by as much as a factor of 800 for a device with an impedance of 100 kΩ\Omega. The advantage of the stub resonator concept is the ease with which the response of the circuit can be predicted, designed and fabricated. We further demonstrate that all relevant matching circuit parameters can reliably be deduced from power reflectance measurements and then used to predict the power transmission function from the device through the circuit. The shot noise of the carbon nanotube quantum dot in the Coulomb blockade regime shows an oscillating suppression below the Schottky value of 2eI2eI, as well an enhancement in specific regions.Comment: 6 pages, 4 figures, supplementar

    Measurements of a Quantum Dot with an Impedance-Matching On-Chip LC Resonator at GHz Frequencies

    Get PDF
    We report the realization of a bonded-bridge on-chip superconducting coil and its use in impedance-matching a highly ohmic quantum dot (QD) to a 3 GHz\rm{3~GHz} measurement setup. The coil, modeled as a lumped-element LCLC resonator, is more compact and has a wider bandwidth than resonators based on coplanar transmission lines (e.g. λ/4\lambda/4 impedance transformers and stub tuners) at potentially better signal-to-noise ratios. In particular for measurements of radiation emitted by the device, such as shot noise, the 50×\times larger bandwidth reduces the time to acquire the spectral density. The resonance frequency, close to 3.25 GHz, is three times higher than that of the one previously reported wire-bonded coil. As a proof of principle, we fabricated an LCLC circuit that achieves impedance-matching to a 15 kΩ\rm{\sim 15~k\Omega} load and validate it with a load defined by a carbon nanotube QD of which we measure the shot noise in the Coulomb blockade regime.Comment: 7 pages, 6 figure

    Electrolyte gate dependent high-frequency measurement of graphene field-effect transistor for sensing applications

    Full text link
    We performed radiofrequency (RF) reflectometry measurements at 2.4 GHz on electrolyte-gated graphene field-effect transistors (GFETs) utilizing a tunable stub-matching circuit for impedance matching. We demonstrate that the gate voltage dependent RF resistivity of graphene can be deduced even in the presence of the electrolyte which is in direct contact with the graphene layer. The RF resistivity is found to be consistent with its DC counterpart in the full gate voltage range. Furthermore, in order to access the potential of high-frequency sensing for applications, we demonstrate time-dependent gating in solution with nanosecond time resolution.Comment: 14 pages, 4 figure
    corecore