49,839 research outputs found
Rocketdyne's advanced coal slurry pumping program
The Rocketdyne Division of Rockwell International Corporation is conducting a program for the engineering, fabrication, and testing of an experimental/prototype high-capacity, high-pressure centrifugal slurry feed pump for coal liquefaction purposes. The abrasion problems in a centrifugal slurry pump are primarily due to the manner in which the hard, solid particles contained in the slurry are transported through the hydraulic flow passages within the pump. The abrasive particles can create scraping, grinding, cutting, and sandblasting effects on the various exposed parts of the pump. These critical areas involving abrasion and impact erosion wear problems in a centrifugal pump are being addressed by Rocketdyne. The mechanisms of abrasion and erosion are being studied through hydrodynamic analysis, materials evaluation, and advanced design concepts
Synthesising and utilising complex evidence to inform policy in education and health.
Oslo, Norway, May 19 to 21, 200
Bounds on Cubic Lorentz-Violating Terms in the Fermionic Dispersion Relation
We study the recently proposed Lorentz-violating dispersion relation for
fermions and show that it leads to two distinct cubic operators in the
momentum. We compute the leading order terms that modify the non-relativistic
equations of motion and use experimental results for the hyperfine transition
in the ground state of the ion to bound the values of the
Lorentz-violating parameters and for neutrons. The resulting
bounds depend on the value of the Lorenz-violating background four-vector in
the laboratory frame.Comment: Revtex 4, four pages. Version to match the one to appear in Physical
Review
Spin-Seebeck effect in a strongly interacting Fermi gas
We study the spin-Seebeck effect in a strongly interacting, two-component
Fermi gas and propose an experiment to measure this effect by relatively
displacing spin up and spin down atomic clouds in a trap using spin-dependent
temperature gradients. We compute the spin-Seebeck coefficient and related
spin-heat transport coefficients as functions of temperature and interaction
strength. We find that when the inter-spin scattering length becomes larger
than the Fermi wavelength, the spin-Seebeck coefficient changes sign as a
function of temperature, and hence so does the direction of the
spin-separation. We compute this zero-crossing temperature as a function of
interaction strength and in particular in the unitary limit for the inter-spin
scattering
- …