6,162 research outputs found

    Using Two-jet Events to Understand Hadronization

    Get PDF
    While the hard phase of the strong interaction is well described by perturbative QCD, the soft hadronization phase is less understood. Benefiting from the high statistics from e+e- experiments at the Z0 resonance, it is possible to impose strong two-jet cuts on the data without loosing the statistical significance. In these events perturbative activity is suppressed and hadronization effects can be more prominent. We show that after proper event cuts a set of observables are sensitive to differences in the hadronization models. These observables can thus be important tools for a more detailed study of the hadronization mechanism.Comment: 18 pages, 6 ps figure

    Investigations into the BFKL Mechanism with a Running QCD Coupling

    Get PDF
    We present approximations of varying degree of sophistication to the integral equations for the (gluon) structure functions of a hadron (``the partonic flux factor'') in a model valid in the Leading Log Approximation with a running coupling constant. The results are all of the BFKL-type, i.e. a power in the Bjorken variable x_B^{-\lambda} with the parameter \lambda determined from the size \alpha_0 of the ``effective'' running coupling \bar{\alpha}\equiv 3\alpha_s/\pi= \alpha_0/\log(k_{\perp}^2) and varying depending upon the treatment of the transverse momentum pole. We also consider the implications for the transverse momentum (k_{\perp}) fluctuations along the emission chains and we obtain an exponential falloff in the relevant \kappa\equiv \log(k_{\perp}^2)-variable, i.e. an inverse power (k_{\perp}^2)^{-(2+\lambda)} with the same parameter \lambda. This is different from the BFKL-result for a fixed coupling, where the distributions are Gaussian in the \kappa-variable with a width as in a Brownian motion determined by ``the length'' of the emission chains, i.e. \log(1/x_B). The results are verified by a realistic Monte Carlo simulation and we provide a simple physics motivation for the change.Comment: 24 pages, 10 supplementary files, submitted to Physical Review

    Regional similarities in the distributions of well yield from crystalline rocks in Fennoscandia

    Get PDF
    Well yields from Precambrian and Palaeozoic bedrock in Norway, Sweden and Finland exhibit very similar and approximately log-normal distributions: all three data sets exhibit a median yield of 600–700 L hr-1, despite the differences in climate and lithology. This similarity is tentatively reflected on a larger geographical scale by a meta-analysis of the international data sets on crystalline rock aquifers from other recently glaciated areas (i.e., without a thick regolith of weathered rock). An heuristic treatment of the Fennoscandian data sets suggests that this median yield is consistent with the following bulk properties of shallow (to c. 70–80 m depth) crystalline bedrock: transmissivity of 0.56 ± 0.30 m2 d-1 (6.4 ± 3.4 x 10-6 m2 s-1) and hydraulic conductivity of around 1.1 (± 0.6) x 10-7 m s-1

    Color separate singlets in e+e−e^+e^- annihilation

    Get PDF
    We use the method of color effective Hamiltonian to study the properties of states in which a gluonic subsystem forms a color singlet, and we will study the possibility that such a subsystem hadronizes as a separate unit. A parton system can normally be subdivided into singlet subsystems in many different ways, and one problem arises from the fact that the corresponding states are not orthogonal. We show that if only contributions of order 1/Nc21/N_c^2 are included, the problem is greatly simplified. Only a very limited number of states are possible, and we present an orthogonalization procedure for these states. The result is simple and intuitive and could give an estimate of the possibility to produce color separated gluonic subsystems, if no dynamical effects are important. We also study with a simple MC the possibility that configurations which correspond to "short strings" are dynamically favored. The advantage of our approach over more elaborate models is its simplicity, which makes it easier to estimate color reconnection effects in reactions which are more complicated than the relatively simple e+e−e^+e^- annihilation.Comment: Revtex, 24 pages, 7 figures; Compared to the previous version, 1 new figure is added and Monte-Carlo results are re-analyzed, as suggested by the referee; To appear in Phys. Rev.

    The Feynman-Wilson gas and the Lund model

    Get PDF
    We derive a partition function for the Lund fragmentation model and compare it with that of a classical gas. For a fixed rapidity ``volume'' this partition function corresponds to a multiplicity distribution which is very close to a binomial distribution. We compare our results with the multiplicity distributions obtained from the JETSET Monte Carlo for several scenarios. Firstly, for the fragmentation vertices of the Lund string. Secondly, for the final state particles both with and without decays.Comment: Latex, 21+1 pages, 11 figure

    Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    Get PDF
    The purpose of Modification No. 5 of this contract is to expand the scope of work (Task C) of this research study effort to develop pressure instrumentation for the SSME. The objective of this contract (Task C) is to direct Honeywell's Solid State Electronics Division's (SSED) extensive experience and expertise in solid state sensor technology to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. SSED's basic approach is to effectively utilize the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors in terms of reliability, accuracy and ease of manufacture. More specifically, integration of multiple functions on a single chip is the key attribute of this technology which will be exploited during this research study

    Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    Get PDF
    The objective of the research project described is to define and demonstrate methods to advance the state of the art of pressure sensors for the space shuttle main engine (SSME). Silicon piezoresistive technology was utilized in completing tasks: generation and testing of three transducer design concepts for solid state applications; silicon resistor characterization at cryogenic temperatures; experimental chip mounting characterization; frequency response optimization and prototype design and fabrication. Excellent silicon sensor performance was demonstrated at liquid nitrogen temperature. A silicon resistor ion implant dose was customized for SSME temperature requirements. A basic acoustic modeling software program was developed as a design tool to evaluate frequency response characteristics

    Research pressure instrumentation for NASA space shuttle main engine

    Get PDF
    The breadboard feasibility model of a silicon piezoresistive pressure transducer suitable for space shuttle main engine (SSME) applications was demonstrated. The development of pressure instrumentation for the SSME was examined. The objective is to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. Effective utilization of the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors for reliability, accuracy and ease of manufacture is analyzed. Integration of multiple functions on a single chip is the key attribute of the technology

    Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    Get PDF
    The advantages of silicon piezoresistive strain sensing technology are being used to achieve the objectives of state of the art pressure sensors for SSME applications. The integration of multiple functions on a single chip is the key attribute being exploited. Progress is reported in transducer packaging and materials; silicon resistor characterization at cryogenic temperatures; chip mounting; and frequency response optimization

    Minijets and Transverse Energy Flow in High Energy Collisions

    Get PDF
    We study the distribution of jets and transverse energy flow in high energyhadron-hadron or nucleus-nucleus collisions. In the minijet region correlationsand coherence effects can be taken into account in a description, where theparton flux is described by non-integrated structure functions. In a ``naive''calculation based on integrated structure functions, the cross section blows upfor small pT, which makes it necessary to introduce a soft cutoff. In ourapproach we find a dynamical suppression at low pT, which makes it possible toextrapolate to higher energies and make more reliable predictions for RHIC andLHC
    • …
    corecore