184 research outputs found

    Facile preparation of layered double hydroxide (LDH)-alginate beads as sustainable system for the triggered release of diclofenac: Effect of pH and temperature on release rate

    No full text
    This paper concerns the facile preparation of alginate beads encapsulating layered double hydroxide (LDH) intercalated with diclofenac sodium as drug delivery systems. To better evaluate the effect of LDH carrier, alginate beads loaded with free diclofenac were also prepared. Composites hydrogel beads were ionotropically crosslinked in CaCl2 solution at 4 °C. Thermal and barrier properties were evaluated and correlated with the presence of the inorganic phase. Swelling behavior was investigated over time. Release kinetics of diclofenac at different pH and temperatures were evaluated. The diclofenac release behavior appeared to be affected by the presence of LDH, the pH of release medium and the temperature allowing for fabricating a sustainable composite characterized by a triggered drug release rate. Finally, empirical relationships correlating the drug diffusion as a function of temperature and pH were extrapolated

    A novel approach to design sustainable fiber reinforced materials from renewable sources: Mathematical modeling for the evaluation of the effect of fiber content on biocomposite properties

    No full text
    The paper reports a sustainable, fast and efficient methodology to treat natural hemp fibers (HF) using a mechanochemical approach. Mechanical milling was used to carry out an alkaline attack on HFs for 30 min at ambient temperature. Composites HF/pectins were prepared by varying the fiber weight fraction (3%; 7.5%; 10%; 20% w/w by weight). The improvement in thermal degradation, mechanical and barrier properties to water vapor was correlated with the fiber volume fraction and mainly due to the improved fiber-matrix adhesion. The fibers-matrix interaction was then evaluated by analyzing and modeling the mechanical properties using several mathematical models: a modified Nielsen and Pukànszky and Smith models. Sorption isotherms to water vapor were analyzed through a modified Guggenheim, Anderson, de Boer (GAB) model where a new parameter, α, was introduced to consider the heterogeneity of the system. Finally, a modified Burgemman model was used to fit the experimental data and support the improvement in water diffusion with fiber loading

    Gelatin Beads/Hemp Hurd as pH Sensitive Devices for Delivery of Eugenol as Green Pesticide

    No full text
    In this paper gelatin beads reinforced with natural hemp hurd have been produced as pH sensitive devices for the release of eugenol, as green pesticide. The composites beads, with a mean diameter of about 1 mm, were obtained by polymer droplet gelation in sunflower oil. Thermal properties were evaluated showing no noticeable difference after the introduction of hemp hurd. Barrier properties demonstrated an improvement of hydrophobization. The introduction of 5% w/w of hemp hurd led to a reduction of sorption coefficient of about 85% compared to unloaded gelatin beads. Besides, the diffusion coefficient decreased, introducing 5% w/w of hemp hurd, from 8.91 × 10−7 to 0.77 × 10−7 cm2/s. Swelling and dissolution phenomena of gelatin beads were studied as function of pH. The swelling of gelatin beads raised as pH increased up to 2.3 g/g, 9.1 g/g and 27.33 g/g at pH 3, 7 and 12, respectively. The dissolution rate changed from 0.034 at pH 3 to 0.077 h−1 at pH 12. Release kinetics of eugenol at different pH conditions were studied. The released eugenol after 24 h is 98%, 91%, 81 and 63% w/w (pH 3), 87%, 62%, 37 and 32 wt% (pH 7) and 81%, 68%, 60 and 52 wt% (pH 12) for unloaded gelatin beads and gelatin beads with 1%, 3 and 5% of hemp hurd, respectively. The eugenol release behavior was demonstrated to be highly sensitive to the pH release medium, which allows to tune such devices as green pesticide release systems in soils with different level of acidity/basicity
    • …
    corecore