26,697 research outputs found

    Measuring Galactic Extinction: A Test

    Get PDF
    We test the recently published all-sky reddening map of Schlegel, Finkbeiner & Davis (1998 [SFD]) using the extinction study of a region in the Taurus dark cloud complex by Arce & Goodman (1999 [AG]). In their study, AG use four different techniques to measure the amount and structure of the extinction toward Taurus, and all four techniques agree very well. Thus we believe that the AG results are a truthful representation of the extinction in the region and can be used to test the reliability of the SFD reddening map. The results of our test show that the SFD all-sky reddening map, which is based on data from COBE/DIRBE and IRAS/ISSA, overestimates the reddening by a factor of 1.3 to 1.5 in regions of smooth extinction with A_V > 0.5 mag. In some regions of steep extinction gradients the SFD map underestimates the reddening value, probably due to its low spatial resolution. We expect that the astronomical community will be using the SFD reddening map extensively. We offer this Letter as a cautionary note about using the SFD map in regions of high extinction (A_V > 0.5 mag), as it might not be giving accurate reddening values there.Comment: 14 pages (which include 2 pages of figures

    Multigrid Monte Carlo with higher cycles in the Sine Gordon model

    Full text link
    We study the dynamical critical behavior of multigrid Monte Carlo for the two dimensional Sine Gordon model on lattices up to 128 x 128. Using piecewise constant interpolation, we perform a W-cycle (gamma=2). We examine whether one can reduce critical slowing down caused by decreasing acceptance rates on large blocks by doing more work on coarser lattices. To this end, we choose a higher cycle with gamma = 4. The results clearly demonstrate that critical slowing down is not reduced in either case.Comment: 7 pages, 1 figure, whole paper including figure contained in ps-file, DESY 93-00

    Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    Full text link
    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ordinary differential equations describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. We uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals in the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system we are able to construct complex periodic orbits in the original, partial differential equation, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations

    Theoretical Analysis of Acceptance Rates in Multigrid Monte Carlo

    Full text link
    We analyze the kinematics of multigrid Monte Carlo algorithms by investigating acceptance rates for nonlocal Metropolis updates. With the help of a simple criterion we can decide whether or not a multigrid algorithm will have a chance to overcome critial slowing down for a given model. Our method is introduced in the context of spin models. A multigrid Monte Carlo procedure for nonabelian lattice gauge theory is described, and its kinematics is analyzed in detail.Comment: 7 pages, no figures, (talk at LATTICE 92 in Amsterdam

    Propagation of temporal entanglement

    Get PDF
    The equations that govern the temporal evolution of two photons in the Schr{\"o}dinger picture are derived, taking into account the effects of loss, group-velocity dispersion, temporal phase modulation, linear coupling among different optical modes, and four-wave mixing. Inspired by the formalism, we propose the concept of quantum temporal imaging, which uses dispersive elements and temporal phase modulators to manipulate the temporal correlation of two entangled photons. We also present the exact solution of a two-photon vector soliton, in order to demonstrate the ease of use and intuitiveness of the proposed formulation.Comment: 8 pages, 4 figure

    Systematic study of the PDC speckle structure for quantum imaging applications

    Full text link
    Sub shot noise imaging of weak object by exploiting Parametric Down Converted light represents a very interesting technological development. A precise characterization of PDC speckle structure in dependence of pump beam parameters is a fundamental tool for this application. In this paper we present a first set of data addressed to this purpose

    Finite momentum condensation in a pumped microcavity

    Full text link
    We calculate the absorption spectra of a semiconductor microcavity into which a non-equilibrium exciton population has been pumped. We predict strong peaks in the spectrum corresponding to collective modes analogous to the Cooper modes in superconductors and fermionic atomic gases. These modes can become unstable, leading to the formation of off-equilibrium quantum condensates. We calculate a phase diagram for condensation, and show that the dominant instabilities can be at a finite momentum. Thus we predict the formation of inhomogeneous condensates, similar to Fulde-Ferrel-Larkin-Ovchinnikov states.Comment: 7 pages, 4 figures, updated to accepted versio

    Linear and non-linear theory of a parametric instability of hydrodynamic warps in Keplerian discs

    Get PDF
    We consider the stability of warping modes in Keplerian discs. We find them to be parametrically unstable using two lines of attack, one based on three-mode couplings and the other on Floquet theory. We confirm the existence of the instability, and investigate its nonlinear development in three dimensions, via numerical experiment. The most rapidly growing non-axisymmetric disturbances are the most nearly axisymmetric (low m) ones. Finally, we offer a simple, somewhat speculative model for the interaction of the parametric instability with the warp. We apply this model to the masing disc in NGC 4258 and show that, provided the warp is not forced too strongly, parametric instability can fix the amplitude of the warp.Comment: 14 pages, 6 figures, revised version with appendix added, to be published in MNRA
    • …
    corecore