381 research outputs found

    Nonequilibrium Precursor Model for the Onset of Percolation in a Two-Phase System

    Get PDF
    Using a Boltzmann equation, we investigate the nonequilibrium dynamics of nonperturbative fluctuations within the context of Ginzburg-Landau models. As an illustration, we examine how a two-phase system initially prepared in a homogeneous, low-temperature phase becomes populated by precursors of the opposite phase as the temperature is increased. We compute the critical value of the order parameter for the onset of percolation, which signals the breakdown of the conventional dilute gas approximation.Comment: 4 pages, 4 eps figures (uses epsf), Revtex. Replaced with version in press Physical Review

    The initial value problem for linearized gravitational perturbations of the Schwarzschild naked singularity

    Full text link
    The coupled equations for the scalar modes of the linearized Einstein equations around Schwarzschild's spacetime were reduced by Zerilli to a 1+1 wave equation with a potential VV, on a field Ψz\Psi_z. For smooth metric perturbations Ψz\Psi_z is singular at rs=−6M/(ℓ−1)(ℓ+2)r_s=-6M/(\ell-1)(\ell+2), ℓ\ell the mode harmonic number, and VV has a second order pole at rsr_s. This is irrelevant to the black hole exterior stability problem, where r>2M>0r>2M>0, and rs<0r_s <0, but it introduces a non trivial problem in the naked singular case where M0M0, and the singularity appears in the relevant range of rr. We solve this problem by developing a new approach to the evolution of the even mode, based on a {\em new gauge invariant function}, Ψ^\hat \Psi -related to Ψz\Psi_z by an intertwiner operator- that is a regular function of the metric perturbation {\em for any value of MM}. This allows to address the issue of evolution of gravitational perturbations in this non globally hyperbolic background, and to complete the proof of the linear instability of the Schwarzschild naked singularity, by showing that a previously found unstable mode is excitable by generic initial data. This is further illustrated by numerically solving the linearized equations for suitably chosen initial data.Comment: typos corrected, references adde

    The collision of boosted black holes: second order close limit calculations

    Get PDF
    We study the head-on collision of black holes starting from unsymmetrized, Brill--Lindquist type data for black holes with non-vanishing initial linear momentum. Evolution of the initial data is carried out with the ``close limit approximation,'' in which small initial separation and momentum are assumed, and second-order perturbation theory is used. We find agreement that is remarkably good, and that in some ways improves with increasing momentum. This work extends a previous study in which second order perturbation calculations were used for momentarily stationary initial data, and another study in which linearized perturbation theory was used for initially moving holes. In addition to supplying answers about the collisions, the present work has revealed several subtle points about the use of higher order perturbation theory, points that did not arise in the previous studies. These points include issues of normalization, and of comparison with numerical simulations, and will be important to subsequent applications of approximation methods for collisions.Comment: 20 pages, RevTeX, 6 figures included with psfi

    The collision of two slowly rotating, initially non boosted, black holes in the close limit

    Get PDF
    We study the collision of two slowly rotating, initially non boosted, black holes in the close limit. A ``punctures'' modification of the Bowen - York method is used to construct conformally flat initial data appropriate to the problem. We keep only the lowest nontrivial orders capable of giving rise to radiation of both gravitational energy and angular momentum. We show that even with these simplifications an extension to higher orders of the linear Regge-Wheeler-Zerilli black hole perturbation theory, is required to deal with the evolution equations of the leading contributing multipoles. This extension is derived, together with appropriate extensions of the Regge-Wheeler and Zerilli equations. The data is numerically evolved using these equations, to obtain the asymptotic gravitational wave forms and amplitudes. Expressions for the radiated gravitational energy and angular momentum are derived and used together with the results of the numerical evolution to provide quantitative expressions for the relative contribution of different terms, and their significance is analyzed.Comment: revtex, 18 pages, 2 figures. Misprints corrected. To be published in Phys. Rev.

    Resonant nucleation of spatio-temporal order via parametric modal amplification

    Get PDF
    We investigate, analytically and numerically, the emergence of spatio-temporal order in nonequilibrium scalar field theories. The onset of order is triggered by destabilizing interactions (DIs), which instantaneously change the interacting potential from a single to a double-well, tunable to be either degenerate (SDW) or nondegenerate (ADW). For the SDW case, we observe the emergence of spatio-temporal coherent structures known as oscillons. We show that this emergence is initially synchronized, the result of parametric amplification of the relevant oscillon modes. We also discuss how these ordered structures act as bottlenecks for equipartition. For ADW potentials, we show how the same parametric amplification mechanism may trigger the rapid decay of a metastable state. For a range of temperatures, the decay rates associated with this resonant nucleation can be orders of magnitude larger than those computed by homogeneous nucleation, with time-scales given by a simple power law, τRN∼[Eb/kBT]B\tau_{\rm RN}\sim[E_b/k_BT]^B, where BB depends weakly on the temperature and Eb/kBTE_b/k_BT is the free-energy barrier of a critical fluctuation.Comment: 38 pages, 20 figures now included within the tex

    Perturbative evolution of conformally flat initial data for a single boosted black hole

    Get PDF
    The conformally flat families of initial data typically used in numerical relativity to represent boosted black holes are not those of a boosted slice of the Schwarzschild spacetime. If such data are used for each black hole in a collision, the emitted radiation will be partially due to the ``relaxation'' of the individual holes to ``boosted Schwarzschild'' form. We attempt to compute this radiation by treating the geometry for a single boosted conformally flat hole as a perturbation of a Schwarzschild black hole, which requires the use of second order perturbation theory. In this we attempt to mimic a previous calculation we did for the conformally flat initial data for spinning holes. We find that the boosted black hole case presents additional subtleties, and although one can evolve perturbatively and compute radiated energies, it is much less clear than in the spinning case how useful for the study of collisions are the radiation estimates for the ``spurious energy'' in each hole. In addition to this we draw some lessons on which frame of reference appears as more favorable for computing black hole collisions in the close limit approximation.Comment: 11 pages, RevTex, 4 figures included with psfig, to appear in PR

    Thermal Phase Mixing During First Order Phase Transitions

    Full text link
    The dynamics of first order phase transitions are studied in the context of (3+1)-dimensional scalar field theories. Particular attention is paid to the question of quantifying the strength of the transition, and how `weak' and `strong' transitions have different dynamics. We propose a model with two available low temperature phases separated by an energy barrier so that one of them becomes metastable below the critical temperature TcT_c. The system is initially prepared in this phase and is coupled to a thermal bath. Investigating the system at its critical temperature, we find that `strong' transitions are characterized by the system remaining localized within its initial phase, while `weak' transitions are characterized by considerable phase mixing. Always at TcT_c, we argue that the two regimes are themselves separated by a (second order) phase transition, with an order parameter given by the fractional population difference between the two phases and a control parameter given by the strength of the scalar field's quartic self-coupling constant. We obtain a Ginzburg-like criterion to distinguish between `weak' and `strong' transitions, in agreement with previous results in (2+1)-dimensions.Comment: 28 pages RevTeX, 9 postscript figures, IMPERIAL/TP/93-94/58, DART-HEP-94/0

    Soliton Solutions with Real Poles in the Alekseev formulation of the Inverse-Scattering method

    Get PDF
    A new approach to the inverse-scattering technique of Alekseev is presented which permits real-pole soliton solutions of the Ernst equations to be considered. This is achieved by adopting distinct real poles in the scattering matrix and its inverse. For the case in which the electromagnetic field vanishes, some explicit solutions are given using a Minkowski seed metric. The relation with the corresponding soliton solutions that can be constructed using the Belinskii-Zakharov inverse-scattering technique is determined.Comment: 8 pages, LaTe

    Drake Equation for the Multiverse: From the String Landscape to Complex Life

    Full text link
    It is argued that selection criteria usually referred to as "anthropic conditions" for the existence of intelligent (typical) observers widely adopted in cosmology amount only to preconditions for primitive life. The existence of life does not imply in the existence of intelligent life. On the contrary, the transition from single-celled to complex, multi-cellular organisms is far from trivial, requiring stringent additional conditions on planetary platforms. An attempt is made to disentangle the necessary steps leading from a selection of universes out of a hypothetical multiverse to the existence of life and of complex life. It is suggested that what is currently called the "anthropic principle" should instead be named the "prebiotic principle."Comment: 6 pages, RevTeX, in press, Int. J. Mod. Phys.
    • …
    corecore