448 research outputs found

    Epibiontic and endobiontic polychaetes of Geodia cydonium (Porifera, Demospongiae) from the Mediterranean Sea

    Get PDF
    Polychaete assemblages associated to the sponge Geodia cydonium were investigated at two sampling sites in the Mediterranean Sea: Porto Cesareo Basin (Apulia) and Marsala Lagoon (Sicily), both characterized by sheltered hydrodynamic conditions. Samples were seasonally performed during 1997, in order to compare the assemblages coming from the two localities studied, considering separately the internal and external tissues of the sponge, and with the aim of evaluating the influence of sponge size on polychaete colonization. The examined sponge is characterized by a peculiar stratification of its tissues: an external thick and hard layer, the cortex, and an internal softer one, the choanosome. Statistical analysis showed that this was the main factor controlling polychaete assemblage, with the internal tissue, less rich and diversified, appearing impoverished with respect to the external layer. A similarity in species composition was observed between sites, even though some differences were evidenced in the abundance of some species, mainly reflecting differences in local environmental conditions. Species richness and density increased with the increasing sponge size. Such a situation is particularly evident at Porto Cesareo, where sponges are covered by an algal layer which is particularly rich on the largest specimens, thus suggesting that most of the species of polychaetes were linked more to the neighbouring environment than to the sponge itself

    Regeneration as a novel method to culture marine ornamental sabellids

    Get PDF
    Collection of live invertebrates from coral reefs has increased dramatically over the past two decades in response to the growing marine aquarium industry, and currently, more than 500 species (excluding corals) are traded globally. Aquaculture of ornamental species is deemed a priority solution in mitigating the effects of wild collection but expanding the range of species is limited by bottlenecks at key life history stages. A novel culture method for ornamental sabellids, which utilises their outstanding regenerative capacity in a process similar to coral ‘fragging’, has been developed and survivorship after regenerative development assessed. Sabella pavonina, a temperate species found around the UK, was used as a model to develop a culture technique which was subsequently transferred to a tropical species of Sabellastarte. Survivorship of S. pavonina was high (≥80%) in individuals which had been cut into as many as eight fragments and all fragments completed regenerative development within a four week period. Sabellastarte species exhibited ≥75% survivorship when cut into just two fragments, but higher mortality was recorded with increasing number of cuts, with only 20% of fragments from individuals cut into eighths surviving the duration of the experiment. Both test species were capable of regenerating cephalically and caudally within a four week period. Caudal regeneration involved the healing of the cut surface, reconstruction of the pygidium and subsequent segment addition, while cephalic regeneration was a more complex process of wound healing, reconstruction of a new mouth and the development of the branchial crown structure. It is concluded that differences in survivorship between S. pavonina and Sabellastarte sp. could be attributed to either infection due to sub-optimal water quality in the test tanks, or species-specific differences in the area of wound size in relation to the length of the fragment. Optimisation of survivorship and the speed of regenerative growth could be improved with the enhancement of the culture system

    Quantification of cortical proprioceptive processing through a wireless and miniaturized EEG amplifier

    Get PDF
    Corticokinematic coherence (CKC) is computed between limb kinematics and cortical activity (e.g. MEG, EEG), and it can be used to detect, quantify and localize the cortical processing of proprioceptive afference arising from the body. EEG-based studies on CKC have been limited to lab environments due to bulky, non-portable instrumentations. We recently proposed a wireless and miniaturized EEG acquisition system aimed at enabling EEG studies outside the laboratory. The purpose of this work is to compare the EEG-based CKC values obtained with this device with a conventional wired-EEG acquisition system to validate its use in the quantification of cortical proprioceptive processing. Eleven healthy right-handed participants were recruited (six males, four females, age range: 24-40 yr). A pneumatic-movement actuator was used to evoke right index-finger flexion-extension movement at 3 Hz for 4 min. The task was repeated both with the wireless-EEG and wired-EEG devices using the same 30-channel EEG cap preparation. CKC was computed between the EEG and finger acceleration. CKC peaked at the movement frequency and its harmonics, being statistically significant (p < 0.05) in 8-10 out of 11 participants. No statistically significant differences (p < 0.05) were found in CKC strength between wireless-EEG (range 0.03-0.22) and wired-EEG (0.02-0.33) systems, that showed a good agreement between the recording systems (3 Hz: r = 0.57, p = 0.071, 6 Hz: r = 0.82, p = 0.003). As expected, CKC peaked in sensors above the left primary sensorimotor cortex contralateral to the moved right index finger. As the wired-EEG device, the tested wireless-EEG system has proven feasible to quantify CKC, and thus can be used as a tool to study proprioception in the human neocortex. Thanks to its portability, the wireless-EEG used in this study has the potential to enable the examination of cortical proprioception in more naturalistic conditions outside the laboratory environment. Clinical Relevance - Our study will contribute to provide innovative technological foundations for future unobtrusive EEG recordings in naturalistic conditions to examine human sensorimotor system

    Design and validation of a wireless Body Sensor Network for integrated EEG and HD-sEMG acquisitions

    Get PDF
    Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and HD-sEMG signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an end-to-end comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration

    Design of a Programmable and Modular Neuromuscular Electrical Stimulator Integrated into a Wireless Body Sensor Network

    Get PDF
    Neuromuscular electrical stimulation finds application in several fields, from basic neurophysiology, to motor rehabilitation and cardiovascular conditioning. Despite the progressively increasing interest in this technique, its State-of-the-Art technology is mainly based on monolithic, mostly wired devices, leading to two main issues. First, these devices are often bulky, limiting their usability in applied contexts. Second, the possibility of interfacing these stimulation devices with external systems for the acquisition of electrophysiological and biomechanical variables to control the stimulation output is often limited. The aim of this work is to describe the design and development of an innovative electrical stimulator, specifically developed to contend with these issues. The developed device is composed of wireless modules that can be programmed and easily interfaced with third-party instrumentation. Moreover, benefiting from the system modular architecture, stimulation may be delivered concurrently to different sites while greatly reducing cable encumbrance. The main design choices and experimental tests are documented, evidencing the practical potential of the device in use-case scenarios

    The multifunctional polydnavirus TnBVANK1 protein: impact on host apoptotic pathway

    Get PDF
    Toxoneuron nigriceps (Hymenoptera, Braconidae) is an endophagous parasitoid of the larval stages of the tobacco budworm, Heliothis virescens (Lepidoptera, Noctuidae). The bracovirus associated with this wasp (TnBV) is currently being studied. Several genes expressed in parasitised host larvae have been isolated and their possible roles partly elucidated. TnBVank1 encodes an ankyrin motif protein similar to insect and mammalian IκB, an inhibitor of the transcription nuclear factor κB (NF-κB). Here we show that, when TnBVank1 was stably expressed in polyclonal Drosophila S2 cells, apoptosis is induced. Furthermore, we observed the same effects in haemocytes of H. virescens larvae, after TnBVank1 in vivo transient transfection, and in haemocytes of parasitised larvae. Coimmunoprecipitation experiments showed that TnBVANK1 binds to ALG-2 interacting protein X (Alix/AIP1), an interactor of apoptosis-linked gene protein 2 (ALG-2). Using double-immunofluorescence labeling, we observed the potential colocalization of TnBVANK1 and Alix proteins in the cytoplasm of polyclonal S2 cells. When Alix was silenced by RNA interference, TnBVANK1 was no longer able to cause apoptosis in both S2 cells and H. virescens haemocytes. Collectively, these results indicate that TnBVANK1 induces apoptosis by interacting with Alix, suggesting a role of TnBVANK1 in the suppression of host immune response observed after parasitisation by T. nigricep

    One Hundred Years of Observations of the Be Star HDE 245770 (the X-ray Binary A0535+26/V725 Tau): The End of an Active Phase

    Full text link
    UBV observations of the X-ray binary system A0535+26/V725 Tau at the Crimean Station of the Sternberg Astronomical Institute in 1980-1998 are presented. Based on our and published data, we analyze the photometric history of the star from 1898.Comment: Translated from Pis'ma Astronomicheskii Zhurnal, Vol. 26, No. 1, 2000, pp. 13-2

    The progesterone receptor Val660→Leu polymorphism and breast cancer risk

    Get PDF
    BACKGROUND: Recent evidence suggests a role for progesterone in breast cancer development and tumorigenesis. Progesterone exerts its effect on target cells by interacting with its receptor; thus, genetic variations, which might cause alterations in the biological function in the progesterone receptor (PGR), can potentially contribute to an individual's susceptibility to breast cancer. It has been reported that the PROGINS allele, which is in complete linkage disequilibrium with a missense substitution in exon 4 (G/T, valine→leucine, at codon 660), is associated with a decreased risk for breast cancer. METHODS: Using a nested case-control study design within the Nurses' Health Study cohort, we genotyped 1252 cases and 1660 matched controls with the use of the Taqman assay. RESULTS: We did not observe any association of breast cancer risk with carrying the G/T (Val660→Leu) polymorphism (odds ratio 1.10, 95% confidence interval 0.93–1.30). In addition, we did not observe an interaction between this allele and menopausal status and family history of breast cancer as reported previously. CONCLUSION: Overall, our study does not support an association between the Val660→Leu PROGINS polymorphism and breast cancer risk
    • …
    corecore