103 research outputs found

    Cryogenic infrared spectroscopy provides mechanistic insight into the fragmentation of phospholipid silver adducts

    Get PDF
    Tandem mass spectrometry is arguably the most important analytical tool for structure elucidation of lipids and other metabolites. By fragmenting intact lipid ions, valuable structural information such as the lipid class and fatty acyl composition are readily obtainable. The information content of a fragment spectrum can often be increased by the addition of metal cations. In particular, the use of silver ions is deeply rooted in the history of lipidomics due to their propensity to coordinate both electron-rich heteroatoms and C = C bonds in aliphatic chains. Not surprisingly, coordination of silver ions was found to enable the distinction of sn-isomers in glycerolipids by inducing reproducible intensity differences in the fragment spectra, which could, however, not be rationalized. Here, we investigate the fragmentation behaviors of silver-adducted sn- and double bond glycerophospholipid isomers by probing fragment structures using cryogenic gas-phase infrared (IR) spectroscopy. Our results confirm that neutral headgroup loss from silver-adducted glycerophospholipids leads to dioxolane-type fragments generated by intramolecular cyclization. By combining high-resolution IR spectroscopy and computational modelling of silver-adducted fragments, we offer qualitative explanations for different fragmentation behaviors of glycerophospholipid isomers. Overall, the results demonstrate that gas-phase IR spectroscopy of fragment ions can significantly contribute to our understanding of lipid dissociation mechanisms and the influence of coordinating cations

    Unveiling Glycerolipid Fragmentation by Cryogenic Infrared Spectroscopy

    Get PDF
    Mass spectrometry is routinely employed for structure elucidation of molecules. Structural information can be retrieved from intact molecular ions by fragmentation; however, the interpretation of fragment spectra is often hampered by poor understanding of the underlying dissociation mechanisms. For example, neutral headgroup loss from protonated glycerolipids has been postulated to proceed via an intramolecular ring closure but the mechanism and resulting ring size have never been experimentally confirmed. Here we use cryogenic gas-phase infrared (IR) spectroscopy in combination with computational chemistry to unravel the structures of fragment ions and thereby shed light on elusive dissociation mechanisms. Using the example of glycerolipid fragmentation, we study the formation of protonated five-membered dioxolane and six-membered dioxane rings and show that dioxolane rings are predominant throughout different glycerolipid classes and fragmentation channels. For comparison, pure dioxolane and dioxane ions were generated from tailor-made dehydroxyl derivatives inspired by natural 1,2- and 1,3-diacylglycerols and subsequently interrogated using IR spectroscopy. Furthermore, the cyclic structure of an intermediate fragment occurring in the phosphatidylcholine fragmentation pathway was spectroscopically confirmed. Overall, the results contribute substantially to the understanding of glycerolipid fragmentation and showcase the value of vibrational ion spectroscopy to mechanistically elucidate crucial fragmentation pathways in lipidomics

    Studying the Key Intermediate of RNA Autohydrolysis by Cryogenic Gas-Phase Infrared Spectroscopy

    Get PDF
    Over the course of the COVID-19 pandemic, mRNA-basedvaccineshave gained tremendous importance. The development and analysis of modified RNA moleculesbenefit from advanced mass spectrometry and require sufficient understanding of fragmentation processes.Analogous tothe degradation of RNA in solution by autohydrolysis,backbone cleavage of RNA strands wasequally observedin the gas phase; however, the fragmentation mechanism remained elusive.In this work,autohydrolysis-like intermediates weregenerated from isolated RNA dinucleotidesin the gas phaseand investigatedusing cryogenic infrared spectroscopy in helium nanodroplets.Data from both experiment and density functional theory provide evidence forthe formation of a five-membered cyclic phosphateintermediateand rule outlinear orsix-membered structures. Furthermore, the experiments show that another prominent condensed-phase reactionof RNA nucleotides can be induced in the gas phase: the tautomerization of cytosine.Both observed reactions aretherefore highlyuniversal and intrinsic properties of the investigated molecules

    Untersuchung des reaktiven Intermediats der RNA Autohydrolyse mittels kryogener Infrarotspektroskopie in der Gasphase

    Get PDF
    Im Laufe der COVID-19 Pandemie haben mRNA-basierte Impfstoffe an immenser Bedeutung gewonnen. Massenspektrometrie ist für die Entwicklung und Analyse von modifizierten RNA Molekülen unerlässlich, setzt jedoch ein grundlegendes Verständnis über Fragmentierungsprozesse voraus. Analog zu der Zersetzung von RNA in Lösung durch Autohydrolyse, kann die Spaltung des RNA Rückgrats ebenso in der Gasphase stattfinden. Bislang sind die Fragmentierungsmechanismen jedoch unzureichend untersucht. In dieser Arbeit wurden Intermediate aus isolierten RNA Dinukleotiden in der Gasphase generiert und mittels kryogener Infrarotspektroskopie in Helium-Nanotröpfchen untersucht. Die experimentellen Daten, unterstützt durch Dichtefunktionaltheorie, liefern Hinweise dafür, dass die Bildung eines fünfgliedrigen zyklischen Phosphat-Intermediats begünstigt ist, während lineare oder sechsgliedrige Strukturen ausgeschlossen werden können. Weiterhin zeigen die Experimente, dass eine zusätzliche, bekannte Reaktion von RNA Nukleotiden in Lösung auch in der Gasphase induziert werden kann: die Tautomerisierung von Cytosin. Die beiden beobachteten Reaktionen spiegeln daher universelle und intrinsische Eigenschaften der untersuchten Moleküle wider

    Long-wave infrared super-resolution wide-field microscopy using sum-frequency generation

    Get PDF
    Super-resolution microscopy in the visible is an established powerful tool in various disciplines. In the long-wave infrared (LWIR) spectral range, however, no comparable schemes have been demonstrated to date. In this work, we experimentally demonstrate super-resolution microscopy in the LWIR range (λIR ≈ 10–12 μm) using IR-visible sum-frequency generation. We operate our microscope in a wide-field scheme and image localized surface phonon polaritons in 4H-SiC nanostructures as a proof-of-concept. With this technique, we demonstrate an enhanced spatial resolution of ~λIR/9, enabling to resolve the polariton resonances in individual sub-diffractional nanostructures with sub-wavelength spacing. Furthermore, we show that this resolution allows us to differentiate between spatial patterns associated with different polariton modes within individual nanostructures

    The FHI FEL Upgrade Design

    No full text
    Since coming on-line in November 2013, the Fritz-Haber-Institut (FHI) der Max-Planck-Gesellschaft (MPG) Free-Electron Laser (FEL) has provided intense, tunable infrared radiation to FHI user groups. It has enabled experiments in diverse fields ranging from bio-molecular spectroscopy to studies of clusters and nanoparticles, nonlinear solid-state spectroscopy, and surface science, resulting in 50 peer-reviewed publications so far. The MPG has now funded a significant upgrade to the original FHI FEL. A second short Rayleigh range undulator FEL beamline is being added that will permit lasing from 160 microns. Additionally, a 500 MHz kicker cavity will permit simultaneous two-color operation of the FEL from both FEL beamlines over an optical range of 5 to 50 microns by deflecting alternate 1 GHz pulses into each of the two undulators. We will describe the upgraded FHI FEL physics and engineering design and present the plans for two-color FEL operations in November 2020

    The FHI FEL Upgrade Design

    No full text
    Since coming on-line in November 2013, the Fritz-Haber-Institut (FHI) der Max-Planck-Gesellschaft (MPG) Free-Electron Laser (FEL) has provided intense, tunable infrared radiation to FHI user groups. It has enabled experiments in diverse fields ranging from bio-molecular spectroscopy to studies of clusters and nanoparticles, nonlinear solid-state spectroscopy, and surface science, resulting in 50 peer-reviewed publications so far. A significant upgrade of the FHI FEL is now being prepared. A second short Rayleigh range undulator FEL beamline is being added that will permit lasing from 160 microns. Additionally, a 500 MHz kicker cavity will permit simultaneous two-color operation of the FEL from both FEL beamlines over an optical range of 5 to 50 microns by deflecting alternate 1 GHz pulses into each of the two undulators. We will describe the upgraded FHI FEL physics and engineering design and present the plans for two-color FEL operations in November 2020

    Unravelling the structural complexity of glycolipids with cryogenic infrared spectroscopy

    Get PDF
    Glycolipids are complex glycoconjugates composed of a glycan headgroup and a lipid moiety. Their modular biosynthesis creates a vast amount of diverse and often isomeric structures, which fulfill highly specific biological functions. To date, no gold-standard analytical technique can provide a comprehensive structural elucidation of complex glycolipids, and insufficient tools for isomer distinction can lead to wrong assignments. Herein we use cryogenic gas-phase infrared spectroscopy to systematically investigate different kinds of isomerism in immunologically relevant glycolipids. We show that all structural features, including isomeric glycan headgroups, anomeric configurations and different lipid moieties, can be unambiguously resolved by diagnostic spectroscopic fingerprints in a narrow spectral range. The results allow for the characterization of isomeric glycolipid mixtures and biological applications
    corecore