1,231 research outputs found

    Fine structure and optical pumping of spins in individual semiconductor quantum dots

    Full text link
    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information

    Generation of frequency sidebands on single photons with indistinguishability from quantum dots

    Get PDF
    Generation and manipulation of the quantum state of a single photon is at the heart of many quantum information protocols. There has been growing interest in using phase modulators as quantum optics devices that preserve coherence. In this Letter, we have used an electro-optic phase modulator to shape the state vector of single photons emitted by a quantum dot to generate new frequency components (modes) and explicitly demonstrate that the phase modulation process agrees with the theoretical prediction at a single photon level. Through two-photon interference measurements we show that for an output consisting of three modes (the original mode and two sidebands), the indistinguishability of the mode engineered photon, measured through the secondorder intensity correlation (g2(0)) is preserved. This work demonstrates a robust means to generate a photonic qubit or more complex state (e.g., a qutrit) for quantum communication applications by encoding information in the sidebands without the loss of coherence

    Giant nonlinearity and entanglement of single photons in photonic bandgap structures

    Full text link
    Giantly enhanced cross-phase modulation with suppressed spectral broadening is predicted between optically-induced dark-state polaritons whose propagation is strongly affected by photonic bandgaps of spatially periodic media with multilevel dopants. This mechanism is shown to be capable of fully entangling two single-photon pulses with high fidelity.Comment: 7 pages, 1 figur

    Non-local nuclear spin quieting in quantum dot molecules: Optically-induced extended two-electron spin coherence time

    Full text link
    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via non-local suppression of nuclear spin fluctuations in both constituent quantum dots (QDs), while optically addressing only the upper QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Lineshape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.Comment: Supplementary materials can be found on the publication page of our website. http://research.physics.lsa.umich.edu/dst/Publications.htm

    Fast spin rotations by optically controlled geometric phases in a quantum dot

    Full text link
    We demonstrate optical control of the geometric phase acquired by one of the spin states of an electron confined in a charge-tunable InAs quantum dot via cyclic 2pi excitations of an optical transition in the dot. In the presence of a constant in-plane magnetic field, these optically induced geometric phases result in the effective rotation of the spin about the magnetic field axis and manifest as phase shifts in the spin quantum beat signal generated by two time-delayed circularly polarized optical pulses. The geometric phases generated in this manner more generally perform the role of a spin phase gate, proving potentially useful for quantum information applications.Comment: 4 pages, 3 figures, resubmitted to Physical Review Letter

    Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots

    Full text link
    We report on the coherent optical excitation of electron spin polarization in the ground state of charged GaAs quantum dots via an intermediate charged exciton (trion) state. Coherent optical fields are used for the creation and detection of the Raman spin coherence between the spin ground states of the charged quantum dot. The measured spin decoherence time, which is likely limited by the nature of the spin ensemble, approaches 10 ns at zero field. We also show that the Raman spin coherence in the quantum beats is caused not only by the usual stimulated Raman interaction but also by simultaneous spontaneous radiative decay of either excited trion state to a coherent combination of the two spin states.Comment: 4 pages, 3 figures. Minor modification

    Internet cigarette vendors make tax-free claims and sell cigarettes cheaper than retail outlets: Table 1

    Get PDF
    This paper aims to (1) assess whether promotion of tax-free sales among Internet cigarette vendors (ICVs) changed between 2009 and 2011, (2) determine which types of ICVs are most likely to promote tax-free sales (e.g., US-based, international, or mixed location ICVs), and (3) compare the price of cigarettes advertised in ICVs to prices at brick-and-mortar retail outlets

    Temperature dependence of polarization relaxation in semiconductor quantum dots

    Full text link
    The decay time of the linear polarization degree of the luminescence in strongly confined semiconductor quantum dots with asymmetrical shape is calculated in the frame of second-order quasielastic interaction between quantum dot charge carriers and LO phonons. The phonon bottleneck does not prevent significantly the relaxation processes and the calculated decay times can be of the order of a few tens picoseconds at temperature T100T \simeq 100K, consistent with recent experiments by Paillard et al. [Phys. Rev. Lett. {\bf86}, 1634 (2001)].Comment: 4 pages, 4 figure
    corecore