6,760 research outputs found
The Cosmic Censor Forbids Naked Topology
For any asymptotically flat spacetime with a suitable causal structure
obeying (a weak form of) Penrose's cosmic censorship conjecture and satisfying
conditions guaranteeing focusing of complete null geodesics, we prove that
active topological censorship holds. We do not assume global hyperbolicity, and
therefore make no use of Cauchy surfaces and their topology. Instead, we
replace this with two underlying assumptions concerning the causal structure:
that no compact set can signal to arbitrarily small neighbourhoods of spatial
infinity (``-avoidance''), and that no future incomplete null geodesic is
visible from future null infinity. We show that these and the focusing
condition together imply that the domain of outer communications is simply
connected. Furthermore, we prove lemmas which have as a consequence that if a
future incomplete null geodesic were visible from infinity, then given our
-avoidance assumption, it would also be visible from points of spacetime
that can communicate with infinity, and so would signify a true naked
singularity.Comment: To appear in CQG, this improved version contains minor revisions to
incorporate referee's suggestions. Two revised references. Plain TeX, 12
page
On the Gannon-Lee Singularity Theorem in Higher Dimensions
The Gannon-Lee singularity theorems give well-known restrictions on the
spatial topology of singularity-free (i.e., nonspacelike geodesically
complete), globally hyperbolic spacetimes. In this paper, we revisit these
classic results in the light of recent developments, especially the failure in
higher dimensions of a celebrated theorem by Hawking on the topology of black
hole horizons. The global hyperbolicity requirement is weakened, and we expand
the scope of the main results to allow for the richer variety of spatial
topologies which are likely to occur in higher-dimensional spacetimes.Comment: 13 pages, no figures, to appear in Class. Quantum Gra
A Strong Maximum Principle for Weak Solutions of Quasi-Linear Elliptic Equations with Applications to Lorentzian and Riemannian Geometry
The strong maximum principle is proved to hold for weak (in the sense of
support functions) sub- and super-solutions to a class of quasi-linear elliptic
equations that includes the mean curvature equation for spacelike
hypersurfaces in a Lorentzian manifold. As one application a Lorentzian warped
product splitting theorem is given.Comment: 37 pages, 1 figure, ams-latex using eepi
Rigid Singularity Theorem in Globally Hyperbolic Spacetimes
We show the rigid singularity theorem, that is, a globally hyperbolic
spacetime satisfying the strong energy condition and containing past trapped
sets, either is timelike geodesically incomplete or splits isometrically as
space time. This result is related to Yau's Lorentzian splitting
conjecture.Comment: 3 pages, uses revtex.sty, to appear in Physical Review
Accretion column eclipses in the X-ray pulsars GX 1+4 and RX J0812.4-3114
Sharp dips observed in the pulse profiles of three X-ray pulsars (GX 1+4, RX
J0812.4-3114 and A 0535+26) have previously been suggested to arise from
partial eclipses of the emission region by the accretion column occurring once
each rotation period. We present pulse-phase spectroscopy from Rossi X-ray
Timing Explorer satellite observations of GX 1+4 and RX J0812.4-3114 which for
the first time confirms this interpretation. The dip phase corresponds to the
closest approach of the column axis to the line of sight, and the additional
optical depth for photons escaping from the column in this direction gives rise
to both the decrease in flux and increase in the fitted optical depth measured
at this phase. Analysis of the arrival time of individual dips in GX~1+4
provides the first measurement of azimuthal wandering of a neutron star
accretion column. The column longitude varies stochastically with standard
deviation 2-6 degrees depending on the source luminosity. Measurements of the
phase width of the dip both from mean pulse profiles and individual eclipses
demonstrates that the dip width is proportional to the flux. The variation is
consistent with that expected if the azimuthal extent of the accretion column
depends only upon the Keplerian velocity at the inner disc radius, which varies
as a consequence of the accretion rate Mdot.Comment: 7 pages, 5 figures, accepted by MNRAS. Included reference
Non-Existence of Black Holes in Certain Spacetimes
Assuming certain asymptotic conditions, we prove a general theorem on the
non-existence of static regular (i.e., nondegenerate) black holes in spacetimes
with a negative cosmological constant, given that the fundamental group of
space is infinite. We use this to rule out the existence of regular negative
mass AdS black holes with Ricci flat scri. For any mass, we also rule out a
class of conformally compactifiable static black holes whose conformal infinity
has positive scalar curvature and infinite fundamental group, subject to our
asymptotic conditions. In a limited, but important, special case our result
adds new support to the AdS/CFT inspired positive mass conjecture of Horowitz
and Myers.Comment: 17 pages, Latex. Typos corrected, minor changes to the text. Accepted
for publication in Classical and Quantum Gravit
Angular Momentum Transfer in the Binary X-ray Pulsar GX 1+4
We describe three presentations relating to the X-ray pulsar GX 1+4 at a
workshop on magnetic fields and accretion at the Astrophysical Theory Centre,
Australian National University on 1998, November 12-13. Optical and X-ray
spectroscopy indicate that GX 1+4 is seen through a cloud of gravitationaly
bound matter. We discuss an unstable negative feedback mechanism (originally
proposed by Kotani et al, 1999), based on X-ray heating of this matter which
controls the accretion rate when the source is in a low X-ray luminosity state.
A deep minimum lasting ~6 hours occurred during observations with the RXTE
satellite over 1996, July 19-21. The shape of the X-ray pulses changed
remarkably from before to after the minimum. These changes may be related to
the transition from neutron star spin-down to spin-up which occurred at about
the same time. Smoothed particle hydrodynamic simulations of the effect of
adding matter with opposite angular momentum to an existing disc, show that it
is possible for a number of concentric rings with alternating senses of
rotation to co-exist in a disc. This could provide an explanation for the
step-like changes in Pdot which are observed in GX 1+4. Changes at the inner
boundary of the disc occur at the same timescale as that imposed at the outer
boundary. Reversals of material torque on the neutron star occur at a minimum
in L_X.Comment: 10 pages, 5 figures; accepted for publication by PAS
Uniqueness of de Sitter space
All inextendible null geodesics in four dimensional de Sitter space dS^4 are
complete and globally achronal. This achronality is related to the fact that
all observer horizons in dS^4 are eternal, i.e. extend from future infinity
scri^+ all the way back to past infinity scri^-. We show that the property of
having a null line (inextendible achronal null geodesic) that extends from
scri^- to scri^+ characterizes dS^4 among all globally hyperbolic and
asymptotically de Sitter spacetimes satisfying the vacuum Einstein equations
with positive cosmological constant. This result is then further extended to
allow for a class of matter models that includes perfect fluids.Comment: 22 pages, 2 figure
- …
