628 research outputs found

    Single spin measurement using spin-orbital entanglement

    Full text link
    Single spin measurement represents a major challenge for spin-based quantum computation. In this article we propose a new method for measuring the spin of a single electron confined in a quantum dot (QD). Our strategy is based on entangling (using unitary gates) the spin and orbital degrees of freedom. An {\em orbital qubit}, defined by a second, empty QD, is used as an ancilla and is prepared in a known initial state. Measuring the orbital qubit will reveal the state of the (unknown) initial spin qubit, hence reducing the problem to the easier task of single charge measurement. Since spin-charge conversion is done with unit probability, single-shot measurement of an electronic spin can be, in principle, achieved. We evaluate the robustness of our method against various sources of error and discuss briefly possible implementations.Comment: RevTeX4, 4 pages, some figs; updated to the published versio

    Room temperature triggered single-photon source in the near infrared

    Full text link
    We report the realization of a solid-state triggered single-photon source with narrow emission in the near infrared at room temperature. It is based on the photoluminescence of a single nickel-nitrogen NE8 colour centre in a chemical vapour deposited diamond nanocrystal. Stable single-photon emission has been observed in the photoluminescence under both continuous-wave and pulsed excitations. The realization of this source represents a step forward in the application of diamond-based single-photon sources to Quantum Key Distribution (QKD) under practical operating conditions.Comment: 10 page

    PGI26 CANADIAN COST-UTILITY ANALYSIS OF INITIATION AND MAINTENANCE TREATMENT WITH ANTI-TNF DRUGS FOR REFRACTORY CROHN'S DISEASE

    Get PDF

    PGI6 COST EFFECTIVENESS ANALYSIS OF ANTI-TNF-ALPHA; DRUGS FOR REFRACTORY ULCERATIVE COLITIS

    Get PDF

    Controlling the quantum dynamics of a mesoscopic spin bath in diamond

    Get PDF
    Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing

    Boosting up quantum key distribution by learning statistics of practical single photon sources

    Full text link
    We propose a simple quantum-key-distribution (QKD) scheme for practical single photon sources (SPSs), which works even with a moderate suppression of the second-order correlation g(2)g^{(2)} of the source. The scheme utilizes a passive preparation of a decoy state by monitoring a fraction of the signal via an additional beam splitter and a detector at the sender's side to monitor photon number splitting attacks. We show that the achievable distance increases with the precision with which the sub-Poissonian tendency is confirmed in higher photon number distribution of the source, rather than with actual suppression of the multi-photon emission events. We present an example of the secure key generation rate in the case of a poor SPS with g(2)=0.19g^{(2)} = 0.19, in which no secure key is produced with the conventional QKD scheme, and show that learning the photon-number distribution up to several numbers is sufficient for achieving almost the same achievable distance as that of an ideal SPS.Comment: 11 pages, 3 figures; published version in New J. Phy

    Experimental open air quantum key distribution with a single photon source

    Full text link
    We present a full implementation of a quantum key distribution (QKD) system with a single photon source, operating at night in open air. The single photon source at the heart of the functional and reliable setup relies on the pulsed excitation of a single nitrogen-vacancy color center in diamond nanocrystal. We tested the effect of attenuation on the polarized encoded photons for inferring longer distance performance of our system. For strong attenuation, the use of pure single photon states gives measurable advantage over systems relying on weak attenuated laser pulses. The results are in good agreement with theoretical models developed to assess QKD security

    Отказоустойчивый многофазный асинхронный электропривод с несинусоидальными токами

    Get PDF
    Рассмотрен принцип построения многофазного асинхронного электропривода, позволяющего при неоднократных отказах преобразователя частоты и двигателя обеспечить отказоустойчивое управление, на основе программируемых несинусоидальных токов с восстановлением работоспособности за счет активизации алгоритма восстановления в управляющем микроконтроллере. Приведены результаты моделирования для аварийной ситуации типа "обрыв фазы" для случая трехфазного двигателя с частичным восстановлением работоспособности асинхронного двигателя

    Completely Positive Maps and Classical Correlations

    Get PDF
    We expand the set of initial states of a system and its environment that are known to guarantee completely positive reduced dynamics for the system when the combined state evolves unitarily. We characterize the correlations in the initial state in terms of its quantum discord [H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)]. We prove that initial states that have only classical correlations lead to completely positive reduced dynamics. The induced maps can be not completely positive when quantum correlations including, but not limited to, entanglement are present. We outline the implications of our results to quantum process tomography experiments.Comment: 4 pages, 1 figur
    corecore