180 research outputs found

    On the nonlinear stability of a quasi-two-dimensional drift kinetic model for ion temperature gradient turbulence

    Get PDF
    We study a quasi-two-dimensional electrostatic drift kinetic system as a model for near-marginal ion temperature gradient (ITG) driven turbulence. A proof is given of the nonlinear stability of this system under conditions of linear stability. This proof is achieved using a transformation that diagonalizes the linear dynamics and also commutes with nonlinear E×BE\times B advection. For the case when linear instability is present, a corollary is found that forbids nonlinear energy transfer between appropriately defined sets of stable and unstable modes. It is speculated that this may explain the preservation of linear eigenmodes in nonlinear gyrokinetic simulations. Based on this property, a dimensionally reduced (∞×∞→1\infty\times\infty \rightarrow 1) system is derived that may be useful for understanding dynamics around the critical gradient of Dimits

    Perturbing an axisymmetric magnetic equilibrium to obtain a quasi-axisymmetric stellarator

    Full text link
    It is demonstrated that finite-pressure, approximately quasi-axisymmetric stellarator equilibria can be directly constructed (without numerical optimization) via perturbations of given axisymmetric equilibria. The size of such perturbations is measured in two ways, via the fractional external rotation and, alternatively, via the relative magnetic field strength, i.e. the average size of the perturbed magnetic field, divided by the unperturbed field strength. It is found that significant fractional external rotational transform can be generated by quasi-axisymmetric perturbations, with a similar value of the relative field strength, despite the fact that the former scales more weakly with the perturbation size. High mode number perturbations are identified as a candidate for generating such transform with local current distributions. Implications for the development of a general non-perturbative solver for optimal stellarator equilibria is discussed

    On the scaling of ion and electron temperature gradient driven turbulence in slab geometry

    Get PDF
    We demonstrate that the scaling properties of slab ion and electron temperature gradient driven turbulence may be derived by dimensional analysis of a drift kinetic system with one kinetic species. These properties have previously been observed in gyrokinetic simulations of turbulence in magnetic fusion devices.Comment: To be published, Phys. Plasmas (2017

    The universal instability in general geometry

    Full text link
    The "universal" instability has recently been revived by Landreman, Antonsen and Dorland [1], who showed that it indeed exists in plasma geometries with straight (but sheared) magnetic field lines. Here it is demonstrated analytically that this instability can be present in more general sheared and toroidal geometries. In a torus, the universal instability is shown to be closely related to the trapped-electron mode, although the trapped-electron drive is usually dominant. However, this drive can be weakened or eliminated, as in the case in stellarators with the maximum-JJ property, leaving the parallel Landau resonance to drive a residual mode, which is identified as the universal instability

    Irreversible energy flow in forced Vlasov dynamics

    Full text link
    A recent paper [Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.Comment: Small changes for clarit

    Nonlinear growth of zonal flows by secondary instability in general magnetic geometry

    Full text link
    We present a theory of the nonlinear growth of zonal flows in magnetized plasma turbulence, by the mechanism of secondary instability. The theory is derived for general magnetic geometry, and is thus applicable to both tokamaks and stellarators. The predicted growth rate is shown to compare favorably with nonlinear gyrokinetic simulations, with the error scaling as expected with the small parameter of the theory.Comment: New J. Phys. 201

    Distinct turbulence saturation regimes in stellarators

    Get PDF
    In the complex 3D magnetic fields of stellarators, ion-temperature-gradient turbulence is shown to have two distinct saturation regimes, as revealed by petascale numerical simulations, and explained by a simple turbulence theory. The first regime is marked by strong zonal flows, and matches previous observations in tokamaks. The newly observed second regime, in contrast, exhibits small- scale quasi-two-dimensional turbulence, negligible zonal flows, and, surprisingly, a weaker heat flux scaling. Our findings suggest that key details of the magnetic geometry control turbulence in stellarators.Comment: Erratum added to en

    Understanding nonlinear saturation in zonal-flow-dominated ion temperature gradient turbulence

    Full text link
    We propose a quantitative model of ion temperature gradient driven turbulence in toroidal magnetized plasmas. In this model, the turbulence is regulated by zonal flows, i.e. mode saturation occurs by a zonal-flow-mediated energy cascade ("shearing"), and zonal flow amplitude is controlled by nonlinear decay. Our model is tested in detail against numerical simulations to confirm that both its assumptions and predictions are satisfied. Key results include (1) a sensitivity of the nonlinear zonal flow response to the energy content of the linear instability, (2) a persistence of zonal-flow-regulated saturation at high temperature gradients, (3) a physical explanation of the nonlinear saturation process in terms of secondary and tertiary instabilities, and (4) dependence of heat flux in terms of dimensionless parameters.Comment: Final journal version. Some clarifications and a new Fig.

    Enstrophy non-conservation and the forward cascade of energy in two-dimensional electrostatic magnetized plasma turbulence

    Full text link
    A fluid system is derived to describe electrostatic magnetized plasma turbulence at scales somewhat larger than the Larmor radius of a given species. It is related to the Hasegawa- Mima equation, but does not conserve enstrophy, and, as a result, exhibits a forward cascade of energy, to small scales. The inertial-range energy spectrum is argued to be shallower than a -11/3 power law, as compared to the -5 law of the Hasegawa-Mima enstrophy cascade. This property, confirmed here by direct numerical simulations of the fluid system, may help explain the fluctuation spectrum observed in gyrokinetic simulations of streamer-dominated electron-temperature-gradient driven turbulence [Plunk et al., 2019], and also possibly some cases of ion-temperature-gradient driven turbulence where zonal flows are suppressed [Plunk et al., 2017]
    • …
    corecore