51 research outputs found

    Predicting neurological outcome after out-of-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm

    Get PDF
    BACKGROUND: Prognostication of neurological outcome in patients who remain comatose after cardiac arrest resuscitation is complex. Clinical variables, as well as biomarkers of brain injury, cardiac injury, and systemic inflammation, all yield some prognostic value. We hypothesised that cumulative information obtained during the first three days of intensive care could produce a reliable model for predicting neurological outcome following out-of-hospital cardiac arrest (OHCA) using artificial neural network (ANN) with and without biomarkers. METHODS: We performed a post hoc analysis of 932 patients from the Target Temperature Management trial. We focused on comatose patients at 24, 48, and 72 h post-cardiac arrest and excluded patients who were awake or deceased at these time points. 80% of the patients were allocated for model development (training set) and 20% for internal validation (test set). To investigate the prognostic potential of different levels of biomarkers (clinically available and research-grade), patients' background information, and intensive care observation and treatment, we created three models for each time point: (1) clinical variables, (2) adding clinically accessible biomarkers, e.g., neuron-specific enolase (NSE) and (3) adding research-grade biomarkers, e.g., neurofilament light (NFL). Patient outcome was the dichotomised Cerebral Performance Category (CPC) at six months; a good outcome was defined as CPC 1-2 whilst a poor outcome was defined as CPC 3-5. The area under the receiver operating characteristic curve (AUROC) was calculated for all test sets. RESULTS: AUROC remained below 90% when using only clinical variables throughout the first three days in the ICU. Adding clinically accessible biomarkers such as NSE, AUROC increased from 82 to 94% (p < 0.01). The prognostic accuracy remained excellent from day 1 to day 3 with an AUROC at approximately 95% when adding research-grade biomarkers. The models which included NSE after 72 h and NFL on any of the three days had a low risk of false-positive predictions while retaining a low number of false-negative predictions. CONCLUSIONS: In this exploratory study, ANNs provided good to excellent prognostic accuracy in predicting neurological outcome in comatose patients post OHCA. The models which included NSE after 72 h and NFL on all days showed promising prognostic performance

    Factor analysis for gene regulatory networks and transcription factor activity profiles

    Get PDF
    BACKGROUND: Most existing algorithms for the inference of the structure of gene regulatory networks from gene expression data assume that the activity levels of transcription factors (TFs) are proportional to their mRNA levels. This assumption is invalid for most biological systems. However, one might be able to reconstruct unobserved activity profiles of TFs from the expression profiles of target genes. A simple model is a two-layer network with unobserved TF variables in the first layer and observed gene expression variables in the second layer. TFs are connected to regulated genes by weighted edges. The weights, known as factor loadings, indicate the strength and direction of regulation. Of particular interest are methods that produce sparse networks, networks with few edges, since it is known that most genes are regulated by only a small number of TFs, and most TFs regulate only a small number of genes. RESULTS: In this paper, we explore the performance of five factor analysis algorithms, Bayesian as well as classical, on problems with biological context using both simulated and real data. Factor analysis (FA) models are used in order to describe a larger number of observed variables by a smaller number of unobserved variables, the factors, whereby all correlation between observed variables is explained by common factors. Bayesian FA methods allow one to infer sparse networks by enforcing sparsity through priors. In contrast, in the classical FA, matrix rotation methods are used to enforce sparsity and thus to increase the interpretability of the inferred factor loadings matrix. However, we also show that Bayesian FA models that do not impose sparsity through the priors can still be used for the reconstruction of a gene regulatory network if applied in conjunction with matrix rotation methods. Finally, we show the added advantage of merging the information derived from all algorithms in order to obtain a combined result. CONCLUSION: Most of the algorithms tested are successful in reconstructing the connectivity structure as well as the TF profiles. Moreover, we demonstrate that if the underlying network is sparse it is still possible to reconstruct hidden activity profiles of TFs to some degree without prior connectivity information

    Exploring matrix factorization techniques for significant genes identification of Alzheimer’s disease microarray gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The wide use of high-throughput DNA microarray technology provide an increasingly detailed view of human transcriptome from hundreds to thousands of genes. Although biomedical researchers typically design microarray experiments to explore specific biological contexts, the relationships between genes are hard to identified because they are complex and noisy high-dimensional data and are often hindered by low statistical power. The main challenge now is to extract valuable biological information from the colossal amount of data to gain insight into biological processes and the mechanisms of human disease. To overcome the challenge requires mathematical and computational methods that are versatile enough to capture the underlying biological features and simple enough to be applied efficiently to large datasets.</p> <p>Methods</p> <p>Unsupervised machine learning approaches provide new and efficient analysis of gene expression profiles. In our study, two unsupervised knowledge-based matrix factorization methods, independent component analysis (ICA) and nonnegative matrix factorization (NMF) are integrated to identify significant genes and related pathways in microarray gene expression dataset of Alzheimer’s disease. The advantage of these two approaches is they can be performed as a biclustering method by which genes and conditions can be clustered simultaneously. Furthermore, they can group genes into different categories for identifying related diagnostic pathways and regulatory networks. The difference between these two method lies in ICA assume statistical independence of the expression modes, while NMF need positivity constrains to generate localized gene expression profiles.</p> <p>Results</p> <p>In our work, we performed FastICA and non-smooth NMF methods on DNA microarray gene expression data of Alzheimer’s disease respectively. The simulation results shows that both of the methods can clearly classify severe AD samples from control samples, and the biological analysis of the identified significant genes and their related pathways demonstrated that these genes play a prominent role in AD and relate the activation patterns to AD phenotypes. It is validated that the combination of these two methods is efficient.</p> <p>Conclusions</p> <p>Unsupervised matrix factorization methods provide efficient tools to analyze high-throughput microarray dataset. According to the facts that different unsupervised approaches explore correlations in the high-dimensional data space and identify relevant subspace base on different hypotheses, integrating these methods to explore the underlying biological information from microarray dataset is an efficient approach. By combining the significant genes identified by both ICA and NMF, the biological analysis shows great efficient for elucidating the molecular taxonomy of Alzheimer’s disease and enable better experimental design to further identify potential pathways and therapeutic targets of AD.</p

    Latent physiological factors of complex human diseases revealed by independent component analysis of clinarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diagnosis and treatment of patients in the clinical setting is often driven by known symptomatic factors that distinguish one particular condition from another. Treatment based on noticeable symptoms, however, is limited to the types of clinical biomarkers collected, and is prone to overlooking dysfunctions in physiological factors not easily evident to medical practitioners. We used a vector-based representation of patient clinical biomarkers, or clinarrays, to search for latent physiological factors that underlie human diseases directly from clinical laboratory data. Knowledge of these factors could be used to improve assessment of disease severity and help to refine strategies for diagnosis and monitoring disease progression.</p> <p>Results</p> <p>Applying Independent Component Analysis on clinarrays built from patient laboratory measurements revealed both known and novel concomitant physiological factors for asthma, types 1 and 2 diabetes, cystic fibrosis, and Duchenne muscular dystrophy. Serum sodium was found to be the most significant factor for both type 1 and type 2 diabetes, and was also significant in asthma. TSH3, a measure of thyroid function, and blood urea nitrogen, indicative of kidney function, were factors unique to type 1 diabetes respective to type 2 diabetes. Platelet count was significant across all the diseases analyzed.</p> <p>Conclusions</p> <p>The results demonstrate that large-scale analyses of clinical biomarkers using unsupervised methods can offer novel insights into the pathophysiological basis of human disease, and suggest novel clinical utility of established laboratory measurements.</p

    Patients with suspected acute coronary syndrome in a university hospital emergency department: an observational study

    Get PDF
    BACKGROUND: It is widely considered that improved diagnostics in suspected acute coronary syndrome (ACS) are needed. To help clarify the current situation and the improvement potential, we analyzed characteristics, disposition and outcome among patients with suspected ACS at a university hospital emergency department (ED). METHODS: 157 consecutive patients with symptoms of ACS were included at the ED during 10 days. Risk of ACS was estimated in the ED for each patient based on history, physical examination and ECG by assigning them to one of four risk categories; I (obvious myocardial infarction, MI), II (strong suspicion of ACS), III (vague suspicion of ACS), and IV (no suspicion of ACS). RESULTS: 4, 17, 29 and 50% of the patients were allocated to risk categories I-IV respectively. 74 patients (47%) were hospitalized but only 19 (26%) had ACS as the discharge diagnose. In risk categories I-IV, ACS rates were 100, 37, 12 and 0%, respectively. Of those admitted without ACS, at least 37% could probably, given perfect ED diagnostics, have been immediately discharged. 83 patients were discharged from the ED, and among them there were no hospitalizations for ACS or cardiac mortality at 6 months. Only about three patients per 24 h were considered eligible for a potential ED chest pain unit. CONCLUSIONS: Almost 75% of the patients hospitalized with suspected ACS did not have it, and some 40% of these patients could probably, given perfect immediate diagnostics, have been managed as outpatients. The potential for diagnostic improvement in the ED seems large
    • 

    corecore