214 research outputs found

    Lie Superalgebras and the Multiplet Structure of the Genetic Code II: Branching Schemes

    Full text link
    Continuing our attempt to explain the degeneracy of the genetic code using basic classical Lie superalgebras, we present the branching schemes for the typical codon representations (typical 64-dimensional irreducible representations) of basic classical Lie superalgebras and find three schemes that do reproduce the degeneracies of the standard code, based on the orthosymplectic algebra osp(5|2) and differing only in details of the symmetry breaking pattern during the last step.Comment: 34 pages, 9 tables, LaTe

    The Poisson Bracket for Poisson Forms in Multisymplectic Field Theory

    Full text link
    We present a general definition of the Poisson bracket between differential forms on the extended multiphase space appearing in the geometric formulation of first order classical field theories and, more generally, on exact multisymplectic manifolds. It is well defined for a certain class of differential forms that we propose to call Poisson forms and turns the space of Poisson forms into a Lie superalgebra.Comment: 40 pages LaTe

    Neonatal inhibition of DNA methylation disrupts testosterone-dependent masculinization of neurochemical phenotype

    Get PDF
    Many neural sex differences are differences in the number of neurons of a particular phenotype. For example, male rodents have more calbindin-expressing neurons in the medial preoptic area (mPOA) and bed nucleus of the stria terminalis (BNST), and females have more neurons expressing estrogen receptor alpha (ERα) and kisspeptin in the ventromedial nucleus of the hypothalamus (VMH) and the anteroventral periventricular nucleus (AVPV), respectively. These sex differences depend on neonatal exposure to testosterone, but the underlying molecular mechanisms are unknown. DNA methylation is important for cell phenotype differentiation throughout the developing organism. We hypothesized that testosterone causes sex differences in neurochemical phenotype via changes in DNA methylation, and tested this by inhibiting DNA methylation neonatally in male and female mice, and in females given a masculinizing dose of testosterone. Neonatal testosterone treatment masculinized calbindin, ERα and kisspeptin cell number of females at weaning. Inhibiting DNA methylation with zebularine increased calbindin cell number only in control females, thus eliminating sex differences in calbindin in the mPOA and BNST. Zebularine also reduced the sex difference in ERα cell number in the VMH, in this case by increasing ERα neuron number in males and testosterone-treated females. In contrast, the neonatal inhibition of DNA methylation had no effect on kisspeptin cell number. We conclude that testosterone normally increases the number of calbindin cells and reduces ERα cells in males through orchestrated changes in DNA methylation, contributing to, or causing, the sex differences in both cell types.Fil: Cisternas, Carla Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Cortese, Maria Laura. Georgia State University; Estados UnidosFil: Golynker, Ilona. Georgia State University; Estados UnidosFil: Castillo-Ruiz, Alexandra. Georgia State University; Estados UnidosFil: Forger, Nancy G.. Georgia State University; Estados Unido

    Symmetry Scheme for Amino Acid Codons

    Full text link
    Group theoretical concepts are invoked in a specific model to explain how only twenty amino acids occur in nature out of a possible sixty four. The methods we use enable us to justify the occurrence of the recently discovered twenty first amino acid selenocysteine, and also enables us to predict the possible existence of two more, as yet undiscovered amino acids.Comment: 18 pages which include 4 figures & 3 table

    Does Gender Leave an Epigenetic Imprint on the Brain?

    Get PDF
    The words “sex” and “gender” are often used interchangeably in common usage. In fact, the Merriam-Webster dictionary offers “sex” as the definition of gender. The authors of this review are neuroscientists, and the words “sex” and “gender” mean very different things to us: sex is based on biological factors such as sex chromosomes and gonads, whereas gender has a social component and involves differential expectations or treatment by conspecifics, based on an individual’s perceived sex. While we are accustomed to thinking about “sex” and differences between males and females in epigenetic marks in the brain, we are much less used to thinking about the biological implications of gender. Nonetheless, careful consideration of the field of epigenetics leads us to conclude that gender must also leave an epigenetic imprint on the brain. Indeed, it would be strange if this were not the case, because all environmental influences of any import can epigenetically change the brain. In the following pages, we explain why there is now sufficient evidence to suggest that an epigenetic imprint for gender is a logical conclusion. We define our terms for sex, gender, and epigenetics, and describe research demonstrating sex differences in epigenetic mechanisms in the brain which, to date, is mainly based on work in non-human animals. We then give several examples of how gender, rather than sex, may cause the brain epigenome to differ in males and females, and finally consider the myriad of ways that sex and gender interact to shape gene expression in the brain

    On algebraic structures in supersymmetric principal chiral model

    Full text link
    Using the Poisson current algebra of the supersymmetric principal chiral model, we develop the algebraic canonical structure of the model by evaluating the fundamental Poisson bracket of the Lax matrices that fits into the rs matrix formalism of non-ultralocal integrable models. The fundamental Poisson bracket has been used to compute the Poisson bracket algebra of the monodromy matrix that gives the conserved quantities in involution

    The non-dynamical r-matrices of the degenerate Calogero-Moser models

    Full text link
    A complete description of the non-dynamical r-matrices of the degenerate Calogero-Moser models based on glngl_n is presented. First the most general momentum independent r-matrices are given for the standard Lax representation of these systems and those r-matrices whose coordinate dependence can be gauged away are selected. Then the constant r-matrices resulting from gauge transformation are determined and are related to well-known r-matrices. In the hyperbolic/trigonometric case a non-dynamical r-matrix equivalent to a real/imaginary multiple of the Cremmer-Gervais classical r-matrix is found. In the rational case the constant r-matrix corresponds to the antisymmetric solution of the classical Yang-Baxter equation associated with the Frobenius subalgebra of glngl_n consisting of the matrices with vanishing last row. These claims are consistent with previous results of Hasegawa and others, which imply that Belavin's elliptic r-matrix and its degenerations appear in the Calogero-Moser models. The advantages of our analysis are that it is elementary and also clarifies the extent to which the constant r-matrix is unique in the degenerate cases.Comment: 25 pages, LaTeX; expanded by an appendix detailing the proof of Theorem 1 and a concluding section in version
    • …
    corecore