127 research outputs found

    Exploiting Air-Pressure to Map Floorplans on Point Sets

    Full text link
    We prove a conjecture of Ackerman, Barequet and Pinter. Every floorplan with n segments can be embedded on every set of n points in generic position. The construction makes use of area universal floorplans also known as area universal rectangular layouts. The notion of area used in our context depends on a nonuniform density function. We, therefore, have to generalize the theory of area universal floorplans to this situation. The method is then used to prove a result about accommodating points in floorplans that is slightly more general than the conjecture of Ackerman et al

    Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem

    Full text link
    We consider arrangements of axis-aligned rectangles in the plane. A geometric arrangement specifies the coordinates of all rectangles, while a combinatorial arrangement specifies only the respective intersection type in which each pair of rectangles intersects. First, we investigate combinatorial contact arrangements, i.e., arrangements of interior-disjoint rectangles, with a triangle-free intersection graph. We show that such rectangle arrangements are in bijection with the 4-orientations of an underlying planar multigraph and prove that there is a corresponding geometric rectangle contact arrangement. Moreover, we prove that every triangle-free planar graph is the contact graph of such an arrangement. Secondly, we introduce the question whether a given rectangle arrangement has a combinatorially equivalent square arrangement. In addition to some necessary conditions and counterexamples, we show that rectangle arrangements pierced by a horizontal line are squarable under certain sufficient conditions.Comment: 15 pages, 13 figures, extended version of a paper to appear at the International Symposium on Graph Drawing and Network Visualization (GD) 201

    Contact Representations of Graphs in 3D

    Full text link
    We study contact representations of graphs in which vertices are represented by axis-aligned polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding polyhedra. We show that for every 3-connected planar graph, there exists a simultaneous representation of the graph and its dual with 3D boxes. We give a linear-time algorithm for constructing such a representation. This result extends the existing primal-dual contact representations of planar graphs in 2D using circles and triangles. While contact graphs in 2D directly correspond to planar graphs, we next study representations of non-planar graphs in 3D. In particular we consider representations of optimal 1-planar graphs. A graph is 1-planar if there exists a drawing in the plane where each edge is crossed at most once, and an optimal n-vertex 1-planar graph has the maximum (4n - 8) number of edges. We describe a linear-time algorithm for representing optimal 1-planar graphs without separating 4-cycles with 3D boxes. However, not every optimal 1-planar graph admits a representation with boxes. Hence, we consider contact representations with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a quadratic-time algorithm for representing optimal 1-planar graph with L-shaped polyhedra

    ERAD Components in Organisms with Complex Red Plastids Suggest Recruitment of a Preexisting Protein Transport Pathway for the Periplastid Membrane

    Get PDF
    The plastids of cryptophytes, haptophytes, and heterokontophytes (stramenopiles) (together once known as chromists) are surrounded by four membranes, reflecting the origin of these plastids through secondary endosymbiosis. They share this trait with apicomplexans, which are alveolates, the plastids of which have been suggested to stem from the same secondary symbiotic event and therefore form a phylogenetic clade, the chromalveolates. The chromists are quantitatively the most important eukaryotic contributors to primary production in marine ecosystems. The mechanisms of protein import across their four plastid membranes are still poorly understood. Components of an endoplasmic reticulum-associated degradation (ERAD) machinery in cryptophytes, partially encoded by the reduced genome of the secondary symbiont (the nucleomorph), are implicated in protein transport across the second outermost plastid membrane. Here, we show that the haptophyte Emiliania huxleyi, like cryptophytes, stramenopiles, and apicomplexans, possesses a nuclear-encoded symbiont-specific ERAD machinery (SELMA, symbiont-specific ERAD-like machinery) in addition to the host ERAD system, with targeting signals that are able to direct green fluorescent protein or yellow fluorescent protein to the predicted cellular localization in transformed cells of the stramenopile Phaeodactylum tricornutum. Phylogenies of the duplicated ERAD factors reveal that all SELMA components trace back to a red algal origin. In contrast, the host copies of cryptophytes and haptophytes associate with the green lineage to the exclusion of stramenopiles and alveolates. Although all chromalveolates with four membrane-bound plastids possess the SELMA system, this has apparently not arisen in a single endosymbiotic event. Thus, our data do not support the chromalveolate hypothesis

    On Arrangements of Orthogonal Circles

    Full text link
    In this paper, we study arrangements of orthogonal circles, that is, arrangements of circles where every pair of circles must either be disjoint or intersect at a right angle. Using geometric arguments, we show that such arrangements have only a linear number of faces. This implies that orthogonal circle intersection graphs have only a linear number of edges. When we restrict ourselves to orthogonal unit circles, the resulting class of intersection graphs is a subclass of penny graphs (that is, contact graphs of unit circles). We show that, similarly to penny graphs, it is NP-hard to recognize orthogonal unit circle intersection graphs.Comment: Appears in the Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization (GD 2019

    On the Order Dimension of Convex Geometries

    Full text link
    We study the order dimension of the lattice of closed sets for a convex geometry. Further, we prove the existence of large convex geometries realized by planar point sets that have very low order dimension. We show that the planar point set of Erdos and Szekeres from 1961 which is a set of 2^(n-2) points and contains no convex n-gon has order dimension n - 1 and any larger set of points has order dimension strictly larger than n - 1.Comment: 12 pages, 2 figure

    On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity and Kandinsky Drawings

    Full text link
    We study two variants of the well-known orthogonal drawing model: (i) the smooth orthogonal, and (ii) the octilinear. Both models form an extension of the orthogonal, by supporting one additional type of edge segments (circular arcs and diagonal segments, respectively). For planar graphs of max-degree 4, we analyze relationships between the graph classes that can be drawn bendless in the two models and we also prove NP-hardness for a restricted version of the bendless drawing problem for both models. For planar graphs of higher degree, we present an algorithm that produces bi-monotone smooth orthogonal drawings with at most two segments per edge, which also guarantees a linear number of edges with exactly one segment.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Upward Three-Dimensional Grid Drawings of Graphs

    Full text link
    A \emph{three-dimensional grid drawing} of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight line segments representing the edges do not cross. Our aim is to produce three-dimensional grid drawings with small bounding box volume. We prove that every nn-vertex graph with bounded degeneracy has a three-dimensional grid drawing with O(n3/2)O(n^{3/2}) volume. This is the broadest class of graphs admiting such drawings. A three-dimensional grid drawing of a directed graph is \emph{upward} if every arc points up in the z-direction. We prove that every directed acyclic graph has an upward three-dimensional grid drawing with (n3)(n^3) volume, which is tight for the complete dag. The previous best upper bound was O(n4)O(n^4). Our main result is that every cc-colourable directed acyclic graph (cc constant) has an upward three-dimensional grid drawing with O(n2)O(n^2) volume. This result matches the bound in the undirected case, and improves the best known bound from O(n3)O(n^3) for many classes of directed acyclic graphs, including planar, series parallel, and outerplanar

    Visibility Representations of Boxes in 2.5 Dimensions

    Full text link
    We initiate the study of 2.5D box visibility representations (2.5D-BR) where vertices are mapped to 3D boxes having the bottom face in the plane z=0z=0 and edges are unobstructed lines of sight parallel to the xx- or yy-axis. We prove that: (i)(i) Every complete bipartite graph admits a 2.5D-BR; (ii)(ii) The complete graph KnK_n admits a 2.5D-BR if and only if n19n \leq 19; (iii)(iii) Every graph with pathwidth at most 77 admits a 2.5D-BR, which can be computed in linear time. We then turn our attention to 2.5D grid box representations (2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit square at integer coordinates. We show that an nn-vertex graph that admits a 2.5D-GBR has at most 4n6n4n - 6 \sqrt{n} edges and this bound is tight. Finally, we prove that deciding whether a given graph GG admits a 2.5D-GBR with a given footprint is NP-complete. The footprint of a 2.5D-BR Γ\Gamma is the set of bottom faces of the boxes in Γ\Gamma.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Convexity in partial cubes: the hull number

    Full text link
    We prove that the combinatorial optimization problem of determining the hull number of a partial cube is NP-complete. This makes partial cubes the minimal graph class for which NP-completeness of this problem is known and improves some earlier results in the literature. On the other hand we provide a polynomial-time algorithm to determine the hull number of planar partial cube quadrangulations. Instances of the hull number problem for partial cubes described include poset dimension and hitting sets for interiors of curves in the plane. To obtain the above results, we investigate convexity in partial cubes and characterize these graphs in terms of their lattice of convex subgraphs, improving a theorem of Handa. Furthermore we provide a topological representation theorem for planar partial cubes, generalizing a result of Fukuda and Handa about rank three oriented matroids.Comment: 19 pages, 4 figure
    corecore