25 research outputs found
A hybrid numerical technique for predicting the aerodynamic and acoustic fields of advanced turboprops
A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested
Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering
Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites
Numerical simulation of VAWT stochastic aerodynamic loads produced by atmospheric turbauence: VAWT-SAL code
Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). A principal source of blade fatigue is thought to be the stochastic (i.e., random) aerodynamic loads created by atmospheric turbulence. This report describes the theoretical background of the VAWT Stochastic Aerodynamic Loads (VAWT-SAL) computer code, whose purpose is to numerically simulate these random loads, given the rotor geometry, operating conditions, and assumed turbulence properties. A Double-Multiple-Stream Tube (DMST) analysis is employed to model the rotor's aerodynamic response. The analysis includes the effects of Reynolds number variations, different airfoil sections and chord lengths along the blade span, and an empirical model for dynamic stall effects. The mean ambient wind is assumed to have a shear profile which is described by either a power law or a logarithmic variation with height above ground. Superimposed on this is a full 3-D field of turbulence: i.e., in addition to random fluctuations in time, the turbulence is allowed to vary randomly in planes perpendicular to the mean wind. The influence of flow retardation on the convection of turbulence through the turbine is also modeled. Calculations are presented for the VAWT 34-m Test Bed currently in operation at Bushland, Texas. Predicted time histories of the loads, as well as their Fourier spectra, are presented and discussed. Particular emphasis is placed on the differences between so-called steady-state'' (mean wind only) predictions, and those produced with turbulence present. Somewhat surprisingly, turbulence is found to be capable of either increasing or decreasing the average output power, depending on the turbine's tip-speed ratio. A heuristic explanation for such behavior is postulated, and a simple formula is derived for predicting the magnitude of this effect without the need for a full stochastic simulation. 41 refs., 32 figs., 1 tab
Engineering Numerical Model for Fluid Spin-Up From Rest in a Partially Filled Cylinder
Introduction The transient spin-up of fluid in a cylindrical cavity plays an important role in determining the spin-decay of liquid-filled projectiles, as well as the eigenfrequencies of the interior fluid motion. These in turn impact the stability of the fluid-shell system [1]. Most previous investigators have assumed the fluid completely fills the cylinder, e.g., Wedemeye
Recommended from our members
Energy transfer and isotopic enrichment in vibrationally pumped diatomic molecules
The preliminary results from two experiments on vibration-vibration pumped CO are reported. The first experiment is a demonstration of isotopic enrichment by vibration-vibration pumping. An approx.300/sup 0/K translational temperature flowing mixture of CO, Ar and He is excited by a CO laser and the resulting non-equilibrium vibrational distribution is probed by laser induced fluorescence. In CO plus Ar mixtures, /sup 13/CO enrichments of a factor of three times the natural /sup 13/CO abundance are observed for high, v = 30, vibrational states. In CO plus Ar and He mixtures the /sup 13/CO enrichment is reduced to approximately its natural abundance. Calculations indicate that larger He mole fractions could result in relative enrichment of the /sup 12/CO isotope. The second experiment is a time and state resolved kinetics study of vibration-vibration pumped CO. A pulsed CO laser is used to produce a highly excited vibrational distribution. The vibrationally resolved overtone emission from the ground electronic state is monitored as a function of time for states v = 2 to 40. Electronic emission from the A-X band is also observed. In order to derive the kinetic rates for the various vibrational exchange processes, the data are compared with a kinetic model including all of the energy exchange terms. Preliminary calculations show reasonable agreement with the observed ground electronic state emission. 10 refs., 4 figs
Fast multipole solvers for three-dimensional radiation and fluid flow problems
A number of physics problems can be modeled by a set of N elements, which have pair-wise interactions with one another. The use of such elements for the evolution of vorticity in fluid flows and the calculation of the velocity field from the evolving vorticity field is well known. Fast multipole methods for fluid flow problems have been developed in the past to reduce computational effort to something less than O(N 2). In this paper we develop a fast multipole solver with application to both 3-D radiation problems (calculation of the heat flux from the evolving temperature field in an absorbing medium) and 3-D fluid flow. This is accomplished by using a more general kernel for the associated volume integrals. This kernel also encompasses other applications such as gravitational fields, electrostatics, scattering, etc. The present algorithm has been designed to have a very high "parallel efficiency" when used on massively parallel computers. This feature comes at the expense of computational effort, which is less than O(N 2) but greater than O(N) or O(NlnN)
Recommended from our members
Fast Multipole Solvers for Three-Dimensional Radiation and Fluid Flow Problems
A number of physics problems can be modeled by a set of N elements, which have pair-wise interactions with one another. The use of such elements for the evolution of vorticity in fluid flows and the calculation of the velocity field from the evolving vorticity field is well known. Fast multipole methods for fluid flow problems have been developed in we pmt to reduce computational effort to something less than O(N) . In this paper we develop a fast multipole solver with application to both 3-D radiation problems (calculation of the heat flux from the evolving temperature field in an absorbing medium) and 3-D fluid flow. This is accomplished by using a more general kernel for the associated volume integrals. This kernel also encompasses other applications such as gravitational fields, electrostatics, scattering, etc. The present algorithm has been designed to have a very high "parallel efficiency" when used on massively parallel computers. This feature comes at the expense of computational effort, which is less than O(N) but greater than O(N) or O(MnN)