164 research outputs found

    A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1

    Get PDF
    Background: The ethylene receptor family of Arabidopsis consists of five members, falling into two subfamilies. Subfamily 1 is composed of ETR1 and ERS1, and subfamily 2 is composed of ETR2, ERS2, and EIN4. Although mutations have been isolated in the genes encoding all five family members, the only previous insertion allele of ERS1 (ers1-2) is a partial loss-of-function mutation based on our analysis. The purpose of this study was to determine the extent of signaling mediated by subfamily-1 ethylene receptors through isolation and characterization of null mutations. Results: We isolated new T-DNA insertion alleles of subfamily 1 members ERS1 and ETR1 (ers1-3 and etr1-9, respectively), both of which are null mutations based on molecular, biochemical, and genetic analyses. Single mutants show an ethylene response similar to wild type, although both mutants are slightly hypersensitive to ethylene. Double mutants of ers1-3 with etr1-9, as well as with the previously isolated etr1-7, display a constitutive ethylene-response phenotype more pronounced than that observed with any previously characterized combination of ethylene receptor mutations. Dark-grown etr1-9;ers1-3 and etr1-7;ers1-3 seedlings display a constitutive triple-response phenotype. Light-grown etr1-9;ers1-3 and etr1-7;ers1-3 plants are dwarfed, largely sterile, exhibit premature leaf senescence, and develop novel filamentous structures at the base of the flower. A reduced level of ethylene response was still uncovered in the double mutants, indicating that subfamily 2 receptors can independently contribute to signaling, with evidence suggesting that this is due to their interaction with the Raf-like kinase CTR1. Conclusion: Our results are consistent with the ethylene receptors acting as redundant negative regulators of ethylene signaling, but with subfamily 1 receptors playing the predominant role. Loss of a single member of subfamily 1 is largely compensated for by the activity of the other member, but loss of both subfamily members results in a strong constitutive ethylene-response phenotype. The role of subfamily 1 members is greater than previously suspected and analysis of the double mutant null for both ETR1 and ERS1 uncovers novel roles for the receptors not previously characterized

    Становлення особистості С.В.Бородаєвського: дитячі та юнацькі роки

    Get PDF
    У статті висвітлюються обставини і чинники становлення С.В.Бородаєвського як особистості у дитячі та юнацькі роки. Проаналізовано вплив родинного оточення і виховання, місць народження та проживання, гімназійного й університетського середовищ на формування характеру та світогляду вченого.В статье освещаются обстоятельства и факторы становления С.В.Бородаевского как личности в детские и юношеские годы. Проанализировано влияние семейного окружения и воспитания, мест рождения и проживания, гимназической и университетской среды на формирование характера и мировоззрения ученого.The circumstances and factors of formation of S.V.Borodaevsky as persons in children’s and youthful years are covered in the article. The influence of the family environment and education, the birthplaces and residing, the gymnasia and university environment on formation of character and outlook of the scientist is analyze

    Dynamic patterns of expression for genes regulating cytokinin metabolism and signaling during rice inflorescence development

    Get PDF
    Inflorescence development in cereals, including such important crops as rice, maize, and wheat, directly affects grain number and size and is a key determinant of yield. Cytokinin regulates meristem size and activity and, as a result, has profound effects on inflorescence development and architecture. To clarify the role of cytokinin action in inflorescence development, we used the NanoString nCounter system to analyze gene expression in the early stages of rice panicle development, focusing on 67 genes involved in cytokinin biosynthesis, degradation, and signaling. Results point toward key members of these gene families involved in panicle development and indicate that the expression of many genes involved in cytokinin action differs between the panicle and vegetative tissues. Dynamic patterns of gene expression suggest that subnetworks mediate cytokinin action during different stages of panicle development. The variation of expression during panicle development is greater among genes encoding proteins involved in cytokinin metabolism and negative regulators of the pathway than for the genes in the primary response pathway. These results provide insight into the expression patterns of genes involved in cytokinin action during inflorescence development in a crop of agricultural importance, with relevance to similar processes in other monocots. The identification of subnetworks of genes expressed at different stages of early panicle development suggests that manipulation of their expression could have substantial effects on inflorescence architecture

    A Strong Constitutive Ethylene-Response Phenotype Conferred on Arabidopsis Plants Containing Null Mutations in the Ethylene Receptors ETR1 and ERS1

    Get PDF
    The ethylene receptor family of Arabidopsis consists of five members, falling into two subfamilies. Subfamily 1 is composed of ETR1 and ERS1, and subfamily 2 is composed of ETR2, ERS2, and EIN4. Although mutations have been isolated in the genes encoding all five family members, the only previous insertion allele of ERS1 (ers1-2) is a partial loss-of-function mutation based on our analysis. The purpose of this study was to determine the extent of signaling mediated by subfamily-1 ethylene receptors through isolation and characterization of null mutations

    A Strong Constitutive Ethylene-Response Phenotype Conferred on Arabidopsis Plants Containing Null Mutations in the Ethylene Receptors ETR1 and ERS1

    Get PDF
    The ethylene receptor family of Arabidopsis consists of five members, falling into two subfamilies. Subfamily 1 is composed of ETR1 and ERS1, and subfamily 2 is composed of ETR2, ERS2, and EIN4. Although mutations have been isolated in the genes encoding all five family members, the only previous insertion allele of ERS1 (ers1-2) is a partial loss-of-function mutation based on our analysis. The purpose of this study was to determine the extent of signaling mediated by subfamily-1 ethylene receptors through isolation and characterization of null mutations

    Early-type Stars: Most Favorable Targets for Astrometrically Detectable Planets in the Habitable Zone

    Get PDF
    Early-type stars appear to be a difficult place to look for planets astrometrically. First, they are relatively heavy, and for fixed planetary mass the astrometric signal falls inversely as the stellar mass. Second, they are relatively rare (and so tend to be more distant), and for fixed orbital separation the astrometric signal falls inversely as the distance. Nevertheless, because early-type stars are relatively more luminous, their habitable zones are at larger semi-major axis. Since astrometric signal scales directly as orbital size, this gives early-type stars a strong advantage, which more than compensates for the other two factors. Using the Hipparcos catalog, we show that early-type stars constitute the majority of viable targets for astrometric searches for planets in the habitable zone. We contrast this characteristic to transit searches, which are primarily sensitive to habitable planets around late-type stars.Comment: Submitted to ApJ Letters, 8 pages including 2 figure

    Mechanisms of Signal Transduction by Ethylene: Overlapping and Non-Overlapping Signalling Roles in a Receptor Family

    Get PDF
    The plant hormone ethylene regulates growth and development as well as responses to biotic and abiotic stresses. Over the last few decades, key elements involved in ethylene signal transduction have been identified through genetic approaches, these elements defining a pathway that extends from initial ethylene perception at the endoplasmic reticulum to changes in transcriptional regulation within the nucleus. Here, we present our current understanding of ethylene signal transduction, focusing on recent developments that support a model with overlapping and non-overlapping roles for members of the ethylene receptor family. We consider the evidence supporting this model for sub-functionalization within the receptor family, and then discuss mechanisms by which such a sub-functionalization may occur. To this end, we consider the importance of receptor interactions in modulating their signal output and how such interactions vary in the receptor family. In addition, we consider evidence indicating that ethylene signal output by the receptors involves both phosphorylation-dependent and phosphorylation-independent mechanisms. We conclude with a current model for signalling by the ethylene receptors placed within the overall context of ethylene signal transduction

    SCFKMD Controls Cytokinin Signaling by Regulating the Degradation of Type-B Response Regulators

    Get PDF
    Cytokinins are plant hormones that play critical roles in growth and development. In Arabidopsis, the transcriptional response to cytokinin is regulated by action of type-B Arabidopsis response regulators (ARRs). Although central elements in the cytokinin signal transduction pathway have been identified, mechanisms controlling output remain to be elucidated. Here we demonstrate that a family of F-box proteins, called the kiss me deadly (KMD) family, targets type-B ARR proteins for degradation. KMD proteins form an S-phase kinase-associated PROTEIN1 (SKP1)/Cullin/F-box protein (SCF) E3 ubiquitin ligase complex and directly interact with type-B ARR proteins. Loss-of-function KMD mutants stabilize type-B ARRs and exhibit an enhanced cytokinin response. In contrast, plants with elevated KMD expression destabilize type-B ARR proteins leading to cytokinin insensitivity. Our results support a model in which an SCF(KMD) complex negatively regulates cytokinin responses by controlling levels of a key family of transcription factors

    The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development

    Get PDF
    The phytohormones auxin and cytokinin interact to regulate many plant growth and developmental processes. Elements involved in the biosynthesis, inactivation, transport, perception, and signaling of these hormones have been elucidated, revealing the variety of mechanisms by which signal output from these pathways can be regulated. Recent studies shed light on how these hormones interact with each other to promote and maintain plant growth and development. In this review, we focus on the interaction of auxin and cytokinin in several developmental contexts, including its role in regulating apical meristems, the patterning of the root, the development of the gynoecium and female gametophyte, and organogenesis and phyllotaxy in the shoot

    The Expected Rate of Gamma-Ray Burst Afterglows In Supernova Searches

    Get PDF
    We predict the rate at which Gamma-Ray Burst (GRB) afterglows should be detected in supernova searches as a function of limiting flux. Although GRB afterglows are rarer than supernovae, they are detectable at greater distances because of their higher intrinsic luminosity. Assuming that GRBs trace the cosmic star formation history and that every GRB gives rise to a bright afterglow, we find that the average detection rate of supernovae and afterglows should be comparable at limiting magnitudes brighter than K=18. The actual rate of afterglows is expected to be somewhat lower since only a fraction of all gamma-ray selected GRBs were observed to have associated afterglows. However, the rate could also be higher if the initial gamma-ray emission from GRB sources is more beamed than their late afterglow emission. Hence, current and future supernova searches can place strong constraints on the afterglow appearance fraction and the initial beaming angle of GRB sources.Comment: 13 pages, submitted to ApJ
    corecore