2,296 research outputs found
Generalised Entropy MDPs and Minimax Regret
Bayesian methods suffer from the problem of how to specify prior beliefs. One
interesting idea is to consider worst-case priors. This requires solving a
stochastic zero-sum game. In this paper, we extend well-known results from
bandit theory in order to discover minimax-Bayes policies and discuss when they
are practical.Comment: 7 pages, NIPS workshop "From bad models to good policies
Spectroscopic Confusion: Its Impact on Current and Future Extragalactic HI Surveys
We present a comprehensive model to predict the rate of spectroscopic
confusion in HI surveys, and demonstrate good agreement with the observable
confusion in existing surveys. Generically the action of confusion on the HI
mass function was found to be a suppression of the number count of sources
below the `knee', and an enhancement above it. This results in a bias, whereby
the `knee' mass is increased and the faint end slope is steepened. For ALFALFA
and HIPASS we find that the maximum impact this bias can have on the Schechter
fit parameters is similar in magnitude to the published random errors. On the
other hand, the impact of confusion on the HI mass functions of upcoming medium
depth interferometric surveys, will be below the level of the random errors. In
addition, we find that previous estimates of the number of detections for
upcoming surveys with SKA-precursor telescopes may have been too optimistic, as
the framework implemented here results in number counts between 60% and 75% of
those previously predicted, while accurately reproducing the counts of existing
surveys. Finally, we argue that any future single dish, wide area surveys of HI
galaxies would be best suited to focus on deep observations of the local
Universe (z < 0.05), as confusion may prevent them from being competitive with
interferometric surveys at higher redshift, while their lower angular
resolution allows their completeness to be more easily calibrated for nearby
extended sources.Comment: Accepted to MNRAS, 14 pages, 9 figures, 2 table
Atoms-Photonic Field Interaction: Influence Functional and Perturbation Theory
We study the dynamics of one-electron atoms interacting with a pulsed, elliptically polarized, ultrashort, and coherent state. We use path integral methods. We path integrate the photonic part and extract the corresponding influence functional describing the interaction of the pulse with the atomic electron. Then we angularly decompose it. We keep the first-order angular terms in all but the last factor as otherwise their angular integration would contribute infinites as the number of time slices tends to infinity. Further we use the perturbative expansion of the last factor in powers of the inverse volume and integrate on time. Finally, we obtain a closed angularly decomposed expression of the whole path integral. As an application we develop a scattering theory and study the two-photon ionization of hydrogen
When is Stacking Confusing?: The Impact of Confusion on Stacking in Deep HI Galaxy Surveys
We present an analytic model to predict the HI mass contributed by confused
sources to a stacked spectrum in a generic HI survey. Based on the ALFALFA
correlation function, this model is in agreement with the estimates of
confusion present in stacked Parkes telescope data, and was used to predict how
confusion will limit stacking in the deepest SKA-precursor HI surveys. Stacking
with LADUMA and DINGO UDEEP data will only be mildly impacted by confusion if
their target synthesised beam size of 10 arcsec can be achieved. Any beam size
significantly above this will result in stacks that contain a mass in confused
sources that is comparable to (or greater than) that which is detectable via
stacking, at all redshifts. CHILES' 5 arcsec resolution is more than adequate
to prevent confusion influencing stacking of its data, throughout its bandpass
range. FAST will be the most impeded by confusion, with HI surveys likely
becoming heavily confused much beyond z = 0.1. The largest uncertainties in our
model are the redshift evolution of the HI density of the Universe and the HI
correlation function. However, we argue that the two idealised cases we adopt
should bracket the true evolution, and the qualitative conclusions are
unchanged regardless of the model choice. The profile shape of the signal due
to confusion (in the absence of any detection) was also modelled, revealing
that it can take the form of a double Gaussian with a narrow and wide
component.Comment: 11 pages, 6 figures, accepted to MNRA
Recommended from our members
Stretching Method-Based Operational Modal Analysis of An Old Masonry Lighthouse.
We present in this paper a structural health monitoring study of the Egyptian lighthouse of Rethymnon in Crete, Greece. Using structural vibration data collected on a limited number of sensors during a 3-month period, we illustrate the potential of the stretching method for monitoring variations in the natural frequencies of the structure. The stretching method compares two signals, the current that refers to the actual state of the structure, with the reference one that characterizes the structure at a reference healthy condition. For the structure under study, an 8-day time interval is used for the reference quantity while the current quantity is computed using a time window of 24 h. Our results indicate that frequency shifts of 1% can be detected with high accuracy allowing for early damage assessment. We also provide a simple numerical model that is calibrated to match the natural frequencies estimated using the stretching method. The model is used to produce possible damage scenarios that correspond to 1% shift in the first natural frequencies. Although simple in nature, this model seems to deliver a realistic response of the structure. This is shown by comparing the response at the top of the structure to the actual measurement during a small earthquake. This is a preliminary study indicating the potential of the stretching method for structural health monitoring of historical monuments. The results are very promising. Further analysis is necessary requiring the deployment of the instrumentation (possibly with additional instruments) for a longer period of time
Phonon-assisted optical absorption in silicon from first principles
The phonon-assisted interband optical absorption spectrum of silicon is
calculated at the quasiparticle level entirely from first principles. We make
use of the Wannier interpolation formalism to determine the quasiparticle
energies, as well as the optical transition and electron-phonon coupling matrix
elements, on fine grids in the Brillouin zone. The calculated spectrum near the
onset of indirect absorption is in very good agreement with experimental
measurements for a range of temperatures. Moreover, our method can accurately
determine the optical absorption spectrum of silicon in the visible range, an
important process for optoelectronic and photovoltaic applications that cannot
be addressed with simple models. The computational formalism is quite general
and can be used to understand the phonon-assisted absorption processes in
general
Phase-Field Material Point Method for dynamic brittle fracture with isotropic and anisotropic surface energy
A novel phase field material point method is introduced for robust simulation of dynamic fracture in elastic media considering the most general case of anisotropic surface energy. Anisotropy is explicitly introduced through a properly defined crack density functional. The particular case of impact driven fracture is treated by employing a discrete field approach within the material point method setting. In this, the equations of motion and phase field governing equations are solved independently for each discrete field using a predictor–corrector algorithm. Contact at the interface is resolved through frictional contact conditions. The proposed method is verified using analytical predictions. The influence of surface energy anisotropy and loading conditions on the resulting crack paths is assessed through a set of benchmark problems. Comparisons are made with the standard Phase Field Finite Element Method and experimental observations
Recommended from our members
Impact of phonons and spin-orbit coupling on Auger recombination in InAs
- …