1,836 research outputs found

    Electrical conductivity and resonant states of doped graphene considering next-nearest neighbor interaction

    Full text link
    The next-nearest neighbor interaction (NNN) is included in a tight-binding calculation of the electronic spectrum and conductivity of doped graphene. As a result, we observe a wide variation of the conductivity behavior, since the Fermi energy and the resonance peak are not shifted by the same amount. Such effect can have a profound effect in the idea of explaining the minimal conductivity of graphene as a consequence of impurities or defects. Finally, we also estimate the mean free path and relaxation time due to resonant impurity scattering

    Local control of entanglement in a spin chain

    Full text link
    In a ferromagnetic spin chain, the control of the local effective magnetic field allows to manipulate the static and dynamical properties of entanglement. In particular, the propagation of quantum correlations can be driven to a great extent so as to achieve an entanglement transfer on demand toward a selected site

    A methodology for full-system power modeling in heterogeneous data centers

    Get PDF
    The need for energy-awareness in current data centers has encouraged the use of power modeling to estimate their power consumption. However, existing models present noticeable limitations, which make them application-dependent, platform-dependent, inaccurate, or computationally complex. In this paper, we propose a platform-and application-agnostic methodology for full-system power modeling in heterogeneous data centers that overcomes those limitations. It derives a single model per platform, which works with high accuracy for heterogeneous applications with different patterns of resource usage and energy consumption, by systematically selecting a minimum set of resource usage indicators and extracting complex relations among them that capture the impact on energy consumption of all the resources in the system. We demonstrate our methodology by generating power models for heterogeneous platforms with very different power consumption profiles. Our validation experiments with real Cloud applications show that such models provide high accuracy (around 5% of average estimation error).This work is supported by the Spanish Ministry of Economy and Competitiveness under contract TIN2015-65316-P, by the Gener- alitat de Catalunya under contract 2014-SGR-1051, and by the European Commission under FP7-SMARTCITIES-2013 contract 608679 (RenewIT) and FP7-ICT-2013-10 contracts 610874 (AS- CETiC) and 610456 (EuroServer).Peer ReviewedPostprint (author's final draft

    A Tonks Giradeau Gas in the Presence of a Local Potential

    Full text link
    The physics of a Tonks-Giradeau Gas in the presence of a local potential is studied. In order to evaluate the single particle density matrix (SPDM) of the many-body ground state, the Wiger-Jordan transformation is used. The eigenvector with the largest eigenvalue of the SPDM corresponds to the "Bose-Einstein Condensate"(BEC) State. We find that the "BEC" state density at the positon of the local potential decreases, as expected, in the case of a repulsive potential. For an attractive potential, it decreases or increases depending on the strength of the potential. The superfluidity of this system is investigated both numerically and perturbatively. An experimental method for detecting the effect of an impurity in a Tonks-Giradueau gas is discussed.Comment: 14 pages, 5 figure

    A vertebrate crossveinless 2 homologue modulates BMP activity and neural crest cell migration

    Get PDF
    Previous work has revealed that proteins that bind to bone morphogenetic proteins (BMPs) and inhibit their signalling have a crucial role in the spatial and temporal regulation of cell differentiation and cell migration by BMPs. We have identified a chick homologue of crossveinless 2, a Drosophila gene that was identified in genetic studies as a promoter of BMP-like signalling. Chick Cv-2 has a conserved structure of five cysteine-rich repeats similar to those found in several BMP antagonists, and a C-terminal Von Willebrand type D domain. Cv-2 is expressed in the chick embryo in a number of tissues at sites at which elevated BMP signalling is required. One such site of expression is premigratory neural crest, in which at trunk levels threshold levels of BMP activity are required to initiate cell migration. We show that, when overexpressed, Cv-2 can weakly antagonise BMP4 activity in Xenopus embryos, but that in other in vitro assays Cv-2 can increase the activity of co-expressed BMP4. Furthermore, we find that increased expression of Cv-2 causes premature onset of trunk neural crest cell migration in the chick embryo, indicative of Cv-2 acting to promote BMP activity at an endogenous site of expression. We therefore propose that BMP signalling is modulated both by antagonists and by Cv-2 that acts to elevate BMP activity

    Newton control laws for nonlinear controller design

    Get PDF
    Strong similarities between control theory and the theory on the solution of operator equations have been observed and basic results in control theory have been derived from operator theory arguments. The purpose of this work is to use the underlying duality in order to develop analysis and synthesis techniques for nonlinear systems. As an example, controllers induced by the Newton method are introduced and the corresponding stability characteristics are studied. The concepts are demonstrated by applications to linear and nonlinear systems
    corecore