23,366 research outputs found

    Parallel Implementation of the PHOENIX Generalized Stellar Atmosphere Program. II: Wavelength Parallelization

    Get PDF
    We describe an important addition to the parallel implementation of our generalized NLTE stellar atmosphere and radiative transfer computer program PHOENIX. In a previous paper in this series we described data and task parallel algorithms we have developed for radiative transfer, spectral line opacity, and NLTE opacity and rate calculations. These algorithms divided the work spatially or by spectral lines, that is distributing the radial zones, individual spectral lines, or characteristic rays among different processors and employ, in addition task parallelism for logically independent functions (such as atomic and molecular line opacities). For finite, monotonic velocity fields, the radiative transfer equation is an initial value problem in wavelength, and hence each wavelength point depends upon the previous one. However, for sophisticated NLTE models of both static and moving atmospheres needed to accurately describe, e.g., novae and supernovae, the number of wavelength points is very large (200,000--300,000) and hence parallelization over wavelength can lead both to considerable speedup in calculation time and the ability to make use of the aggregate memory available on massively parallel supercomputers. Here, we describe an implementation of a pipelined design for the wavelength parallelization of PHOENIX, where the necessary data from the processor working on a previous wavelength point is sent to the processor working on the succeeding wavelength point as soon as it is known. Our implementation uses a MIMD design based on a relatively small number of standard MPI library calls and is fully portable between serial and parallel computers.Comment: AAS-TeX, 15 pages, full text with figures available at ftp://calvin.physast.uga.edu/pub/preprints/Wavelength-Parallel.ps.gz ApJ, in pres

    Nodal Structure of Superconductors with Time-Reversal Invariance and Z2 Topological Number

    Full text link
    A topological argument is presented for nodal structures of superconducting states with time-reversal invariance. A generic Hamiltonian which describes a quasiparticle in superconducting states with time-reversal invariance is derived, and it is shown that only line nodes are topologically stable in single-band descriptions of superconductivity. Using the time-reversal symmetry, we introduce a real structure and define topological numbers of line nodes. Stability of line nodes is ensured by conservation of the topological numbers. Line nodes in high-Tc materials, the polar state in p-wave paring and mixed singlet-triplet superconducting states are examined in detail.Comment: 11 pages, 8 figure

    Supersymmetry and localization

    Get PDF
    We study conditions under which an odd symmetry of the integrand leads to localization of the corresponding integral over a (super)manifold. We also show that in many cases these conditions guarantee exactness of the stationary phase approximation of such integrals.Comment: 16 pages, LATE

    Effect of Poisson ratio on cellular structure formation

    Full text link
    Mechanically active cells in soft media act as force dipoles. The resulting elastic interactions are long-ranged and favor the formation of strings. We show analytically that due to screening, the effective interaction between strings decays exponentially, with a decay length determined only by geometry. Both for disordered and ordered arrangements of cells, we predict novel phase transitions from paraelastic to ferroelastic and anti-ferroelastic phases as a function of Poisson ratio.Comment: 4 pages, Revtex, 4 Postscript figures include

    Kaluza-Klein electrically charged black branes in M-theory

    Get PDF
    We present a class of Kaluza-Klein electrically charged black p-brane solutions of ten-dimensional, type IIA superstring theory. Uplifting to eleven dimensions these solutions are studied in the context of M-theory. They can be interpreted either as a p+1 extended object trapped around the eleventh dimension along which momentum is flowing or as a boost of the following backgrounds: the Schwarzschild black (p+1)-brane or the product of the (10-p)-dimensional Euclidean Schwarzschild manifold with the (p+1)-dimensional Minkowski spacetime.Comment: 16 pages, uses latex and epsf macro, figures include

    Trustee: Full Privacy Preserving Vickrey Auction on top of Ethereum

    Get PDF
    The wide deployment of tokens for digital assets on top of Ethereum implies the need for powerful trading platforms. Vickrey auctions have been known to determine the real market price of items as bidders are motivated to submit their own monetary valuations without leaking their information to the competitors. Recent constructions have utilized various cryptographic protocols such as ZKP and MPC, however, these approaches either are partially privacy-preserving or require complex computations with several rounds. In this paper, we overcome these limits by presenting Trustee as a Vickrey auction on Ethereum which fully preserves bids' privacy at relatively much lower fees. Trustee consists of three components: a front-end smart contract deployed on Ethereum, an Intel SGX enclave, and a relay to redirect messages between them. Initially, the enclave generates an Ethereum account and ECDH key-pair. Subsequently, the relay publishes the account's address and ECDH public key on the smart contract. As a prerequisite, bidders are encouraged to verify the authenticity and security of Trustee by using the SGX remote attestation service. To participate in the auction, bidders utilize the ECDH public key to encrypt their bids and submit them to the smart contract. Once the bidding interval is closed, the relay retrieves the encrypted bids and feeds them to the enclave that autonomously generates a signed transaction indicating the auction winner. Finally, the relay submits the transaction to the smart contract which verifies the transaction's authenticity and the parameters' consistency before accepting the claimed auction winner. As part of our contributions, we have made a prototype for Trustee available on Github for the community to review and inspect it. Additionally, we analyze the security features of Trustee and report on the transactions' gas cost incurred on Trustee smart contract.Comment: Presented at Financial Cryptography and Data Security 2019, 3rd Workshop on Trusted Smart Contract

    Tools in the orbit space approach to the study of invariant functions: rational parametrization of strata

    Full text link
    Functions which are equivariant or invariant under the transformations of a compact linear group GG acting in an euclidean space â„śn\real^n, can profitably be studied as functions defined in the orbit space of the group. The orbit space is the union of a finite set of strata, which are semialgebraic manifolds formed by the GG-orbits with the same orbit-type. In this paper we provide a simple recipe to obtain rational parametrizations of the strata. Our results can be easily exploited, in many physical contexts where the study of equivariant or invariant functions is important, for instance in the determination of patterns of spontaneous symmetry breaking, in the analysis of phase spaces and structural phase transitions (Landau theory), in equivariant bifurcation theory, in crystal field theory and in most areas where use is made of symmetry adapted functions. A physically significant example of utilization of the recipe is given, related to spontaneous polarization in chiral biaxial liquid crystals, where the advantages with respect to previous heuristic approaches are shown.Comment: Figures generated through texdraw package; revised version appearing in J. Phys. A: Math. Ge

    Decay widths of large-spin mesons from the non-critical string/gauge duality

    Full text link
    In this paper, we use the non-critical string/gauge duality to calculate the decay widths of large-spin mesons. Since it is believed that the string theory of QCD is not a ten dimensional theory, we expect that the non-critical versions of ten dimensional black hole backgrounds lead to better results than the critical ones. For this purpose we concentrate on the confining theories and consider two different six dimensional black hole backgrounds. We choose the near extremal AdS6 model and the near extremal KM model to compute the decay widths of large-spin mesons. Then, we present our results from these two non-critical backgrounds and compare them together with those from the critical models and experimental data.Comment: 21 pages and 3 figure

    A Note on Marginally Stable Bound States in Type II String Theory

    Get PDF
    Spectrum of elementary string states in type II string theory contains ultra-short multiplets that are marginally stable. UU-duality transformation converts these states into bound states at threshold of pp-branes carrying Ramond-Ramond charges, and wrapped around pp-cycles of a torus. We propose a test for the existence of these marginally stable bound states. Using the recent results of Polchinski and of Witten, we argue that the spectrum of bound states of pp-branes is in agreement with the prediction of UU-duality.Comment: LaTeX file, 6 page

    Relativistic J-matrix method

    Get PDF
    The relativistic version of the J-matrix method for a scattering problem on the potential vanishing faster than the Coulomb one is formulated. As in the non-relativistic case it leads to a finite algebraic eigenvalue problem. The derived expression for the tangent of phase shift is simply related to the non-relativistic case formula and gives the latter as a limit case. It is due to the fact that the used basis set satisfies the ``kinetic balance condition''.Comment: 21 pages, RevTeX, accepted for publication in Phys. Rev.
    • …
    corecore