116 research outputs found

    Ray-optical negative refraction and pseudoscopic imaging with Dove-prism arrays

    Get PDF
    A sheet consisting of an array of small, aligned Dove prisms can locally (on the scale of the width of the prisms) invert one component of the ray direction. A sandwich of two such Dove-prism sheets that inverts both transverse components of the ray direction is a ray-optical approximation to the interface between two media with refractive indices +n and –n. We demonstrate the simulated imaging properties of such a Dove-prism-sheet sandwich, including a demonstration of pseudoscopic imaging

    Particle size as controlling factor of soil microaggregate formation

    Get PDF
    Aggregates are formed when soil particles connect to larger secondary units. Stable microaggregates in soils are supposed to consist of close associations of Fe-oxides and clay minerals with both components being attracted by electrostatic forces between the oppositely charged particles. However, the geometric preconditions for the formation of stable associations between Fe oxides and clay minerals are poorly known. Therefore, our goal was to determine geometrical constraints resulting from particle size and morphology likely impeding optimum arrangement of particles for shielding of charges during aggregate formation. Aggregation kinetics was determined for nine combinations of each three particle size fractions of goethite and mica in a Zetasizer at pH 6. Experiments were conducted using needle-shape goethites synthesized at 4, 20, and 60°C (lengths of 0.42, 0.46 and 0.84 µm, specific surface areas (SSA) of 87, 75, and 60 m²/g, respectively) and ground platy muscovite separated in fine, medium and coarse clay (diameters of 0.16, 0.80, and 2.9 µm, SSA of 182, 100, and 27 m²/g, respectively). For five combinations even smallest additions of goethite to muscovite facilitated aggregation. By further additions of goethite maximum aggregate sizes up to 5.6 µm were obtained, the respective mixing ratio strongly depending on the type of combination. After that sizes declined. For medium and coarse-sized muscovite, goethite amendments >18% did not facilitate aggregation, indicating the dominance of repulsive forces. In contrast, for fine-sized muscovite aggregation was facilitated up to an addition of 63% fine-sized goethite and of 90% coarse-sized goethite. Here also biggest aggregate sizes were obtained. Based on all examined size fraction combinations, our results suggest a strong impact of particle size on aggregation. Whereas all combinations with fine-sized muscovite facilitated aggregation at very different mixing ratios, the amendment of the finest fraction of goethite to medium- and coarse-sized muscovite facilitated aggregation at small additions only. Aggregation was favored for evenly sized combinations. The quantification of surface charge density of minerals and calculation of charge balances of the combinations is in progress and will help interpreting the observed aggregation patterns. For soils it is likely that aggregation by electrostatic interactions occurs only at certain mineral mixing ratios highly depending on particle morphology

    A new purge and trap headspace technique to analyze low volatile compounds from fluid inclusions of rocks and minerals

    Get PDF
    A new method for the analysis of trace gases from fluid inclusions of minerals has been developed. The purge and trap GC-MS system is based on the system described by Nolting et al. (1988) and was optimized for the analyses of halogenated volatile organic compounds (VOCs) having boiling points as low as -128. °C (carbon tetrafluoride).The sample preconcentration cold trap consists of a U-shaped glass lined steel tube (GLT™), that is immersed into a small liquid nitrogen Dewar vessel for cooling. A rapid desorption step heats up the preconcentration tube in <30s from -196°C to 200°C. The process is carried out by using a pressurized air stream to dissipate the liquid nitrogen followed by resistive heating of the trap. The design of the cold trap and the direct transfer of desorbed analytes onto the GC column via a deactivated capillary column retention gap made sample refocusing within the GC oven unnecessary. Furthermore, a special air-tight grinding device was developed in which samples ranging from soft halite (hardness 2, Mohs scale) to hard quartz (hardness 7) are effectively ground to average diameters of 1000nm or below, thereby releasing gases from fluid inclusions of minerals. The gases are then purged from the grinding chamber with a He carrier gas flow. The detection and quantitative determination of gases, such as SF6 and CF4 released from fluorites and CH3Cl from halite samples is demonstrated.DFG/FOR/76

    Nonlinear screening and percolative transition in a two-dimensional electron liquid

    Full text link
    A novel variational method is proposed for calculating the percolation threshold, the real-space structure, and the thermodynamical compressibility of a disordered two-dimensional electron liquid. Its high accuracy is verified against prior numerical results and newly derived exact asymptotics. The inverse compressibility is shown to have a strongly asymmetric minimum at a density that is approximately the triple of the percolation threshold. This implies that the experimentally observed metal-insulator transition takes place well before the percolation point is reached.Comment: 4 pages, 2 figures. (v2) minor changes (v3) reference added (v4) few more references adde

    Physics of the Insulating Phase in the Dilute Two-Dimensional Electron Gas

    Full text link
    We propose to use the radio-frequency single-electron transistor as an extremely sensitive probe to detect the time-periodic ac signal generated by sliding electron lattice in the insulating state of the dilute two-dimensional electron gas. We also propose to use the optically-pumped NMR technique to probe the electron spin structure of the insulating state. We show that the electron effective mass and spin susceptibility are strongly enhanced by critical fluctuations of electron lattice in the vicinity of the metal-insulator transition, as observed in experiment.Comment: 5 pages, 2 figures, uses jetpl.cls (included). v.4: After publication in JETP Letters, two plots comparing theory and experiment are added, and a minor error is correcte

    Universal flow diagram for the magnetoconductance in disordered GaAs layers

    Full text link
    The temperature driven flow lines of the diagonal and Hall magnetoconductance data (G_{xx},G_{xy}) are studied in heavily Si-doped, disordered GaAs layers with different thicknesses. The flow lines are quantitatively well described by a recent universal scaling theory developed for the case of duality symmetry. The separatrix G_{xy}=1 (in units e^2/h) separates an insulating state from a spin-degenerate quantum Hall effect (QHE) state. The merging into the insulator or the QHE state at low temperatures happens along a semicircle separatrix G_{xx}^2+(G_{xy}-1)^2=1 which is divided by an unstable fixed point at (G_{xx},G_{xy})=(1,1).Comment: 10 pages, 5 figures, submitted to Phys. Rev. Let

    Biogenic weathering bridges the nutrient gap in pristine ecosystems - a global comparison

    Get PDF
    In many pristine ecosystems there seems to be negative nutrient budget existent, meaning that export exceeds the input received by aeolian deposition and physico-chemical weathering. Such ecosystems should degrade rather quickly, but are often found surprisingly stable on the long run. Our hypothesis was that this nutrient gap is an artefact caused by not considering the contribution of photoassimilatory-mediated biogenic weathering to the overall nutrient input, which might constitute an additional, energetically directed and demand driven pathway. Here, we firstly evaluated the evolution of mutualistic biogenic weathering along an Antarctic chronosequence and secondly compared the biogenic weathering rates under mycorrhized ecosystems over a global gradient of contrasting states of soil development. We found the ability to perform biogenic weathering increasing along its evolutionary development in photoautotroph-symbiont interaction and furthermore a close relation between fungal biogenic weathering and available potassium across all 16 forested sites in the study, regardless of the dominant mycorrhiza type (AM or EM), climate, and plant-species composition. Our results point towards a general alleviation of nutrient limitation at ecosystem scale via directional, energy driven and on-demand biogenic weathering

    Metallic behavior and related phenomena in two dimensions

    Full text link
    For about twenty years, it has been the prevailing view that there can be no metallic state or metal-insulator transition in two dimensions in zero magnetic field. In the last several years, however, unusual behavior suggestive of such a transition has been reported in a variety of dilute two-dimensional electron and hole systems. The physics behind these observations is presently not understood. We review and discuss the main experimental findings and suggested theoretical models.Comment: To be published in Rev. Mod. Phy

    Effects of dissipation on quantum phase transitions

    Full text link
    We discuss the effect of dissipation on quantum phase transitions. In particular we concentrate on the Superconductor to Insulator and Quantum-Hall to Insulator transitions. By invoking a phenomenological parameter α\alpha to describe the coupling of the system to a continuum of degrees of freedom representing the dissipative bath, we obtain new phase diagrams for the quantum Hall and superconductor-insulator problems. Our main result is that, in two-dimensions, the metallic phases observed in finite magnetic fields (possibly also strictly zero field) are adiabatically deformable from one to the other. This is plausible, as there is no broken symmetry which differentiates them.Comment: 13 pages, 4 figure
    • …
    corecore