1,534 research outputs found

    Mutual information for examining correlations in DNA

    Full text link
    This paper examines two methods for finding whether long-range correlations exist in DNA: a fractal measure and a mutual information technique. We evaluate the performance and implications of these methods in detail. In particular we explore their use comparing DNA sequences from a variety of sources. Using software for performing in silico mutations, we also consider evolutionary events leading to long range correlations and analyse these correlations using the techniques presented. Comparisons are made between these virtual sequences, randomly generated sequences, and real sequences. We also explore correlations in chromosomes from different species.Comment: 8 pages, 3 figure

    Synthesis of novel Iron(III) chelators based on triaza macrocycle backbone and 1-hydroxy-2(H)-pyridin-2-one coordinating groups and their evaluation as antimicrobial agents

    Get PDF
    AbstractSeveral novel chelators based on 1-hydroxy-2(1H)-pyridinone coordinating groups decorating a triaza macrocyclic backbone scaffold were synthesised as potential powerful Fe3+ chelators capable of competing with bacterial siderophores. In particular, a novel chloromethyl derivative of 1-hydroxy-2(1H)-pyridinone exploiting a novel protective group for this family of coordinating groups was developed. These are the first examples of hexadentate chelators based on 1-hydroxy-2(1H)-pyridinone to be shown to have a biostatic activity against a range of pathogenic bacteria. Their efficacy as biostatic agents was assessed revealing that minor variations in the structure of the chelator can affect efficacy profoundly. The minimal inhibitory concentrations of our best tested novel chelators approach or are comparable to those for 1,4,7-tris(3-hydroxy-6-methyl-2-pyridylmethyl)-1,4,7-triazacyclononane, the best Fe3+ chelator known to date. The retarding effect these chelators have on microbial growth suggests that they could have a potential application as a co-active alongside antibiotics in the fight against infections

    Loosely bound hyperons in the SU(3) Skyrme model

    Full text link
    Hyperon pairs bound in deuteron like states are obtained within the SU(3) Skyrme model in agreement with general expectations from boson exchange models. The central binding from the flavor symmetry breaking terms increases with the strangeness contents of the interacting baryons whereas the kinetic non-linear σ\sigma-model term fixes the spin and isospin of the bound pair. We give a complete account of the interactions of octet baryons within the product approximation to baryon number B=2B=2 configurations.Comment: 35 pages REVTEX including 2 figs, with 3 further figs available on request from [email protected] or from [email protected] SI-94-TP3S2; STPHY-Th/94-

    SIMP (Strongly Interacting Massive Particle) Search

    Full text link
    We consider laboratory experiments that can detect stable, neutral strongly interacting massive particles (SIMPs). We explore the SIMP annihilation cross section from its minimum value (restricted by cosmological bounds) to the barn range, and vary the mass values from a GeV to a TeV. We also consider the prospects and problems of detecting such particles at the Tevatron.Comment: Latex. 7 pages, 1 eps figure. Proceedings to the 4th UCLA Symposium on Dark Matter DM2000, Marina del Rey, CA, USA, Feb. 23-25, 200

    Model-independent constraints on spin observables

    Full text link
    We discuss model-independent constraints on spin observables in exclusive and inclusive reactions, with special attention to the case of photoproduction.Comment: 6 pages, 5 figures, Talk by J.-M. Richard at NSTAR 2009, IHEP, Beijing (China), April 19-22, 2009, Proc. to appear in "Chinese Physics C

    Hyperon-nucleon scattering and hyperon masses in the nuclear medium

    Get PDF
    We analyze low-energy hyperon-nucleon scattering using an effective field theory in next-to-leading order. By fitting experimental cross sections for laboratory hyperon momenta below 200 MeV/c and using information from the hypertriton we determine twelve contact-interaction coefficients. Based on these we discuss the low-density expansion of hyperon mass shifts in the nuclear medium.Comment: 10 pages, 2 figure

    Limits on \boldmath n {\bar n} oscillations from nuclear stability

    Full text link
    The relationship between the lower limit on the nuclear stability lifetime as derived from the non disappearance of `stable` nuclei (Td ≳ 5.4 × 1031T_{d}~\gtrsim~5.4~\times~10^{31} yr), and the lower limit thus implied on the oscillation time (τnnˉ)(\tau_{n \bar n}) of a possibly underlying neutron-antineutron oscillation process, is clarified by studying the time evolution of the nuclear decay within a simple model which respects unitarity. The order-of-magnitude result τnnˉ≈2(Td/Γnˉ)1/2>2×108\tau_{n \bar n} \approx 2 (T_{d}/\Gamma_{\bar n})^{1/2} > 2 \times 10^{8} sec, where Γnˉ\Gamma_{\bar n} is a typical nˉ\bar n nuclear annihilation width, agrees as expected with the limit on τnnˉ\tau_{n \bar n} established by several detailed nuclear physics calculations, but sharply disagreeing by 15 orders of magnitude with a claim published recently in Phys. Rev. CRAP.Comment: 8 pages; this PRC version (accepted for publication, November 4 1999) differs from the original version only by a few minor editorial change

    Monoenergetic proton beams accelerated by a radiation pressure driven shock

    Full text link
    High energy ion beams (> MeV) generated by intense laser pulses promise to be viable alternatives to conventional ion beam sources due to their unique properties such as high charge, low emittance, compactness and ease of beam delivery. Typically the acceleration is due to the rapid expansion of a laser heated solid foil, but this usually leads to ion beams with large energy spread. Until now, control of the energy spread has only been achieved at the expense of reduced charge and increased complexity. Radiation pressure acceleration (RPA) provides an alternative route to producing laser-driven monoenergetic ion beams. In this paper, we show the interaction of an intense infrared laser with a gaseous hydrogen target can produce proton spectra of small energy spread (~ 4%), and low background. The scaling of proton energy with the ratio of intensity over density (I/n) indicates that the acceleration is due to the shock generated by radiation-pressure driven hole-boring of the critical surface. These are the first high contrast mononenergetic beams that have been theorised from RPA, and makes them highly desirable for numerous ion beam applications

    Some comments on nˉp\bar n p-annihilation branching ratios into ππ\pi \pi-, KˉK\bar K K- and πη\pi \eta-channels

    Full text link
    We give some remarks on the nˉp\bar n p-partial branching ratios in flight at low momenta of antineutron, measured by OBELIX collaboration. The comparison is made to the known branching ratios from the ppˉp \bar p-atomic states. The branching ratio for the reaction nˉp→π+π0\bar n p \to \pi^+\pi^0 is found to be suppressed in comparison to what follows from the ppˉ p \bar p-data. It is also shown, that there is no so called dynamic I=0-amplitude suppression for the process NNˉ→KKˉN\bar N \to K\bar K.Comment: 8 pages, LaTeX, no figure
    • …
    corecore