176 research outputs found

    Electron spin resonance on a 2-dimensional electron gas in a single AlAs quantum well

    Full text link
    Direct electron spin resonance (ESR) on a high mobility two dimensional electron gas in a single AlAs quantum well reveals an electronic gg-factor of 1.991 at 9.35 GHz and 1.989 at 34 GHz with a minimum linewidth of 7 Gauss. The ESR amplitude and its temperature dependence suggest that the signal originates from the effective magnetic field caused by the spin orbit-interaction and a modulation of the electron wavevector caused by the microwave electric field. This contrasts markedly to conventional ESR that detects through the microwave magnetic field.Comment: 4 pages, 4 figure

    Coulomb Drag as a Probe of the Nature of Compressible States in a Magnetic Field

    Full text link
    Magneto-drag reveals the nature of compressible states and the underlying interplay of disorder and interactions. At \nu=3/2 a clear T^{4/3} dependence is observed, which signifies the metallic nature of the N=0 Landau level. In contrast, drag in higher Landau levels reveals an additional contribution, which anomalously grows with decreasing T before turning to zero following a thermal activation law. The anomalous drag is discussed in terms of electron-hole asymmetry arising from disorder and localization, and the crossover to normal drag at high fields as due to screening of disorder.Comment: 5 pages, 4 figure

    Activated Transport in the individual Layers that form the νT\nu_T=1 Exciton Condensate

    Full text link
    We observe the total filling factor νT\nu_{T}=1 quantum Hall state in a bilayer two-dimensional electron system with virtually no tunnelling. We find thermally activated transport in the balanced system with a monotonic increase of the activation energy with decreasing d/Bd/\ell_B below 1.65. In the imbalanced system we find activated transport in each of the layers separately, yet the activation energies show a striking asymmetry around the balance point. This implies that the gap to charge-excitations in the {\em individual} layers is substantially different for positive and negative imbalance.Comment: 4 pages. 4 figure

    Exciton condensate at a total filling factor of 1 in Corbino 2D electron bilayers

    Full text link
    Magneto-transport and drag measurements on a quasi-Corbino 2D electron bilayer at the systems total filling factor 1 (v_tot=1) reveal a drag voltage that is equal in magnitude to the drive voltage as soon as the two layers begin to form the expected v_tot=1 exciton condensate. The identity of both voltages remains present even at elevated temperatures of 0.25 K. The conductance in the current carrying layer vanishes only in the limit of strong coupling between the two layers and at T->0 K which suggests the presence of an excitonic circular current

    A New Type of Electron Nuclear-Spin Interaction from Resistively Detected NMR in the Fractional Quantum Hall Effect Regime

    Full text link
    Two dimensional electron gases in narrow GaAs quantum wells show huge longitudinal resistance (HLR) values at certain fractional filling factors. Applying an RF field with frequencies corresponding to the nuclear spin splittings of {69}Ga, {71}Ga and {75}As leads to a substantial decreases of the HLR establishing a novel type of resistively detected NMR. These resonances are split into four sub lines each. Neither the number of sub lines nor the size of the splitting can be explained by established interaction mechanisms.Comment: 4 pages, 3 figure

    Spin effects in the magneto-drag between double quantum wells

    Full text link
    We report on the selectivity to spin in a drag measurement. This selectivity to spin causes deep minima in the magneto-drag at odd fillingfactors for matched electron densities at magnetic fields and temperatures at which the bare spin energy is only one tenth of the temperature. For mismatched densities the selectivity causes a novel 1/B-periodic oscillation, such that negative minima in the drag are observed whenever the majority spins at the Fermi energies of the two-dimensional electron gasses (2DEGs) are anti-parallel, and positive maxima whenever the majority spins at the Fermi energies are parallel.Comment: 4 pages, 3 figure

    The visibility of IQHE at sharp edges: Experimental proposals based on interactions and edge electrostatics

    Full text link
    The influence of the incompressible strips on the integer quantized Hall effect (IQHE) is investigated, considering a cleaved-edge overgrown (CEO) sample as an experimentally realizable sharp edge system. We propose a set of experiments to clarify the distinction between the large-sample limit when bulk disorder defines the IQHE plateau width and the small-sample limit smaller than the disorder correlation length, when self-consistent edge electrostatics define the IQHE plateau width. The large-sample or bulk QH regime is described by the usual localization picture, whereas the small-sample or edge regime is discussed within the compressible/incompressible strips picture, known as the screening theory of QH edges. Utilizing the unusually sharp edge profiles of the CEO samples, a Hall bar design is proposed to manipulate the edge potential profile from smooth to extremely sharp. By making use of a side-gate perpendicular to the two dimensional electron system, it is shown that the plateau widths can be changed or even eliminated altogether. Hence, the visibility of IQHE is strongly influenced when adjusting the edge potential profile and/or changing the dc current direction under high currents in the non-linear transport regime. As a second investigation, we consider two different types of ohmic contacts, namely highly transmitting (ideal) and highly reflecting (non-ideal) contacts. We show that if the injection contacts are non-ideal, however still ohmic, it is possible to measure directly the non-quantized transport taking place at the bulk of the CEO samples. The results of the experiments we propose will clarify the influence of the edge potential profile and the quality of the contacts, under quantized Hall conditions.Comment: Substantially revised version of manuscript arXiv:0906.3796v1, including new figures et

    Scanned Potential Microscopy of Edge and Bulk Currents in the Quantum Hall Regime

    Full text link
    Using an atomic force microscope as a local voltmeter, we measure the Hall voltage profile in a 2D electron gas in the quantum Hall (QH) regime. We observe a linear profile in the bulk of the sample in the transition regions between QH plateaus and a distinctly nonlinear profile on the plateaus. In addition, localized voltage drops are observed at the sample edges in the transition regions. We interpret these results in terms of theories of edge and bulk currents in the QH regime.Comment: 4 pages, 5 figure

    Energy security and shifting modes of governance

    Get PDF
    The concept of energy security fits uneasily into contemporary security debates. It is neither a clearly traditional nor a fully ‘non-traditional’ security issue. There are also limits to the social constructedness of the concept. This article argues that, while it is important to identify the differing securitizations of energy, these must be contextualized within the material realities and the differing historical modes of governance of the political economy of resources. This is essential for understanding the differing meanings accorded to energy security, the shifting modes through which energy is governed, and the extent to which energy security concerns drive international politics. In this context, contemporary concerns over energy security have both material and ideological dimensions: anxiety over the dual shift of power from West to East and from resource-importing to resource-exporting countries; and concern over the normative weakening of the neo-liberal mode of energy governance
    corecore