2,207 research outputs found

    Ising Quantum Hall Ferromagnet in Magnetically Doped Quantum Wells

    Full text link
    We report on the observation of the Ising quantum Hall ferromagnet with Curie temperature TCT_C as high as 2 K in a modulation-doped (Cd,Mn)Te heterostructure. In this system field-induced crossing of Landau levels occurs due to the giant spin-splitting effect. Magnetoresistance data, collected over a wide range of temperatures, magnetic fields, tilt angles, and electron densities, are discussed taking into account both Coulomb electron-electron interactions and s−-d coupling to Mn spin fluctuations. The critical behavior of the resistance ``spikes'' at T→TCT \to T_C corroborates theoretical suggestions that the ferromagnet is destroyed by domain excitations.Comment: revised, 4 pages, 4 figure

    Disorder-induced pseudodiffusive transport in graphene nanoribbons.

    Get PDF
    We study the transition from ballistic to diffusive and localized transport in graphene nanoribbons in the presence of binary disorder, which can be generated by chemical adsorbates or substitutional doping. We show that the interplay between the induced average doping (arising from the nonzero average of the disorder) and impurity scattering modifies the traditional picture of phase-coherent transport. Close to the Dirac point, intrinsic evanescent modes produced by the impurities dominate transport at short lengths giving rise to a regime analogous to pseudodiffusive transport in clean graphene, but without the requirement of heavily doped contacts. This intrinsic pseudodiffusive regime precedes the traditional ballistic, diffusive, and localized regimes. The last two regimes exhibit a strongly modified effective number of propagating modes and a mean free path which becomes anomalously large close to the Dirac point

    Origin of bulk uniaxial anisotropy in zinc-blende dilute magnetic semiconductors

    Full text link
    It is demonstrated that the nearest neighbor Mn pair on the GaAs (001) surface has a lower energy for the [-110] direction comparing to the [110] case. According to the group theory and the Luttinger's method of invariants, this specific Mn distribution results in bulk uniaxial in-plane and out-of-plane anisotropies. The sign and magnitude of the corresponding anisotropy energies determined by a perturbation method and ab initio computations are consistent with experimental results.Comment: 5 pages, 1 figur

    Spin-related magnetoresistance of n-type ZnO:Al and Zn_{1-x}Mn_{x}O:Al thin films

    Full text link
    Effects of spin-orbit coupling and s-d exchange interaction are probed by magnetoresistance measurements carried out down to 50 mK on ZnO and Zn_{1-x}Mn_{x}O with x = 3 and 7%. The films were obtained by laser ablation and doped with Al to electron concentration ~10^{20} cm^{-3}. A quantitative description of the data for ZnO:Al in terms of weak-localization theory makes it possible to determine the coupling constant \lambda_{so} = (4.4 +- 0.4)*10^{-11} eVcm of the kp hamiltonian for the wurzite structure, H_{so} = \lambda_{so}*c(s x k). A complex and large magnetoresistance of Zn_{1-x}Mn_{x}O:Al is interpreted in terms of the influence of the s-d spin-splitting and magnetic polaron formation on the disorder-modified electron-electron interactions. It is suggested that the proposed model explains the origin of magnetoresistance observed recently in many magnetic oxide systems.Comment: 4 pages, 4 figure

    Jahn-Teller Distortion and Ferromagnetism in the Dilute Magnetic Semiconductors GaN:Mn

    Full text link
    Using first-principles total-energy methods, we investigate Jahn-Teller distortions in III-V dilute magnetic semiconductors, GaAs:Mn and GaN:Mn in the cubic zinc blende structure. The results for an isolated Mn impurity on a Ga site show that there is no appreciable effect in GaAs, whereas, in GaN there is a Jahn-Teller effect in which the symmetry around the impurity changes from Td_{d} to D2d_{2d} or to C2v_{2v}. The large effect in GaN occurs because of the localized d4^4 character, which is further enhanced by the distortion. The lower symmetry should be detectable experimentally in cubic GaN with low Mn concentration, and should be affected by charge compensation (reductions of holes and conversion of Mn ions to d5^5 with no Jahn-Teller effect). Jahn-Teller effect is greatly reduced because the symmetry at each Mn site is lowered due to the Mn-Mn interaction. The tendency toward ferromagnetism is found to be stronger in GaN:Mn than in GaAs:Mn and to be only slightly reduced by charge compensation.Comment: 6 pages, 3 figure

    Bound Magnetic Polaron Interactions in Insulating Doped Diluted Magnetic Semiconductors

    Full text link
    The magnetic behavior of insulating doped diluted magnetic semiconductors (DMS) is characterized by the interaction of large collective spins known as bound magnetic polarons. Experimental measurements of the susceptibility of these materials have suggested that the polaron-polaron interaction is ferromagnetic, in contrast to the antiferromagnetic carrier-carrier interactions that are characteristic of nonmagnetic semiconductors. To explain this behavior, a model has been developed in which polarons interact via both the standard direct carrier-carrier exchange interaction (due to virtual carrier hopping) and an indirect carrier-ion-carrier exchange interaction (due to the interactions of polarons with magnetic ions in an interstitial region). Using a variational procedure, the optimal values of the model parameters were determined as a function of temperature. At temperatures of interest, the parameters describing polaron-polaron interactions were found to be nearly temperature-independent. For reasonable values of these constant parameters, we find that indirect ferromagnetic interactions can dominate the direct antiferromagnetic interactions and cause the polarons to align. This result supports the experimental evidence for ferromagnetism in insulating doped DMS.Comment: 11 pages, 7 figure

    Tailoring ferromagnetic chalcopyrites

    Full text link
    If magnetic semiconductors are ever to find wide application in real spintronic devices, their magnetic and electronic properties will require tailoring in much the same way that band gaps are engineered in conventional semiconductors. Unfortunately, no systematic understanding yet exists of how, or even whether, properties such as Curie temperatures and band gaps are related in magnetic semiconductors. Here we explore theoretically these and other relationships within 64 members of a single materials class, the Mn-doped II-IV-V2 chalcopyrites, three of which are already known experimentally to be ferromagnetic semiconductors. Our first-principles results reveal a variation of magnetic properties across different materials that cannot be explained by either of the two dominant models of ferromagnetism in semiconductors. Based on our results for structural, electronic, and magnetic properties, we identify a small number of new stable chalcopyrites with excellent prospects for ferromagnetism.Comment: 6 pages with 4 figures, plus 3 supplementary figures; to appear in Nature Material
    • …
    corecore