368 research outputs found
Pseudogap Formation in Models for Manganites
The density-of-states (DOS) and one-particle spectral function of the one- and two-orbital models for manganites, the latter with
Jahn-Teller phonons, are evaluated using Monte Carlo techniques. Unexpectedly
robust pseudogap (PG) features were found at low- and
intermediate-temperatures, particularly at or near regimes where
phase-separation occurs as 0. The PG follows the chemical potential
and it is caused by the formation of ferromagnetic metallic clusters in an
insulating background. It is argued that PG formation should be generic of
mixed-phase regimes. The results are in good agreement with recent
photoemission experiments for .Comment: Accepted for publication in Phys. Rev. Lett., 4 pages, Revtex, with 4
figures embedde
Pulmonary infiltrates during community acquired Gram-negative bacteremia:a retrospective single centre study
BACKGROUND: The primary aim of this study was to describe the frequency of pulmonary infiltrates on chest X-ray (CXR) during community acquired Gram-negative bacteremia at a single centre in Denmark. METHODS: The patients were retrospectively identified from the laboratory information system and clinical and radiological data were retrieved from the electronic health records. Overall 114 patients with E.coli or K.pneumoniae bacteremia fulfilled the inclusion criteria during the period 2009–2010. RESULTS: CXR was performed in 77% of cases (80% of E.coli and 56% of K.pneumoniae) among which infiltrates were identified in 34%. The two most frequent localizations of infiltrates during E.coli bacteremia were lower lobe/basal (56%) and diffuse (22%). Furthermore, 30% of infiltrates were bilateral while 40% were present on the right lung and 30% on the left lung. CONCLUSIONS: In conclusion, the presence of infiltrates during community acquired Gram-negative bacteremia was very frequent in our population
Temperature-Dependent Pseudogaps in Colossal Magnetoresistive Oxides
Direct electronic structure measurements of a variety of the colossal
magnetoresistive oxides show the presence of a pseudogap at the Fermi energy
E_F which drastically suppresses the electron spectral function at E_F. The
pseudogap is a strong function of the layer number of the samples (sample
dimensionality) and is strongly temperature dependent, with the changes
beginning at the ferromagnetic transition temperature T_c. These trends are
consistent with the major transport trends of the CMR oxides, implying a direct
relationship between the pseudogap and transport, including the "colossal"
conductivity changes which occur across T_c. The k-dependence of the
temperature-dependent effects indicate that the pseudogap observed in these
compounds is not due to the extrinsic effects proposed by Joynt.Comment: 5 pages, 6 figures, submitted to Phys. Rev.
Optimized fabrication of high quality La0.67Sr0.33MnO3 thin films considering all essential characteristics
In this article, an overview of the fabrication and properties of high
quality La0.67Sr0.33MnO3 (LSMO) thin films is given. A high quality LSMO film
combines a smooth surface morphology with a large magnetization and a small
residual resistivity, while avoiding precipitates and surface segregation. In
literature, typically only a few of these issues are adressed. We therefore
present a thorough characterization of our films, which were grown by pulsed
laser deposition. The films were characterized with reflection high energy
electron diffraction, atomic force microscopy, x-ray diffraction, magnetization
and transport measurements, x-ray photoelectron spectroscopy and scanning
transmission electron microscopy. The films have a saturation magnetization of
4.0 {\mu}B/Mn, a Curie temperature of 350 K and a residual resistivity of 60
{\mu}{\Omega}cm. These results indicate that high quality films, combining both
large magnetization and small residual resistivity, were realized. A comparison
between different samples presented in literature shows that focussing on a
single property is insufficient for the optimization of the deposition process.
For high quality films, all properties have to be adressed. For LSMO devices,
the thin film quality is crucial for the device performance. Therefore, this
research is important for the application of LSMO in devices.Comment: Accepted for publication in Journal of Physics D - Applied Physic
- …