13 research outputs found

    Hunting for the New Symmetries in Calabi-Yau Jungles

    Full text link
    It was proposed that the Calabi-Yau geometry can be intrinsically connected with some new symmetries, some new algebras. In order to do this it has been analyzed the graphs constructed from K3-fibre CY_d (d \geq 3) reflexive polyhedra. The graphs can be naturally get in the frames of Universal Calabi-Yau algebra (UCYA) and may be decode by universal way with changing of some restrictions on the generalized Cartan matrices associated with the Dynkin diagrams that characterize affine Kac-Moody algebras. We propose that these new Berger graphs can be directly connected with the generalizations of Lie and Kac-Moody algebras.Comment: 29 pages, 15 figure

    Lie algebras

    No full text

    The potential of helical tomotherapy in the treatment of head and neck cancer

    No full text
    A decade after its first introduction into the clinic, little is known about the clinical impact of helical tomotherapy (HT) on head and neck cancer (HNC) treatment. Therefore, we analyzed the basics of this technique and reviewed the literature regarding HT's potential benefit in HNC. The past two decades have been characterized by a huge technological evolution in photonbeamradiotherapy (RT). InHNC,staticbeamintensitymodulated radiotherapy (IMRT) has shown superiority over three-dimensional conformal RT in terms of xerostomia and is considered the standard of care. However, the next-generation IMRT, the rotational IMRT, has been introduced into the clinic without any evidence of superiority over static beam IMRTother than being substantially faster. Of these rotational techniques, HT is the first system especially developed for IMRT in combination with image-guided RT. HT is particularly promising for the treatment of HNC because its sharp dose gradients maximally spare the many radiosensitive organs at risk nearby. In addition, HT's integrated computed tomography scan assures a very precise dose administration and allows for some adaptive RT. Because HT is specifically developed for IMRT in combination with (integrated) imageguidance, it allows for precise dose distribution ("dose painting"), patient setup, and dose delivery. As such, it is an excellent tool for difficult HNC irradiation. The literature on the clinical results of HT in HNC all show excellent short-term (≤2 years) results with acceptable toxicity profiles. However, properly designed trials are still warranted to further substantiate these results. ©AlphaMed Press 2013
    corecore