interval [CI]: 64-89%) and 95.8% (95% CI: 90-100%) respectively. Thirteen pts presented LR failures, of which 4 had isolated local failure, 4 had isolated regional failure, 2 had local and regional failures, and 3 had simultaneous LR and distant relapses. Of 13 pts with LR relapse, only 1 (8%) had marginal failure, with the remaining 92% failing truly in-field within the high-dose region. No patient recurred in vicinity of spared PG, SMG or OC. Surgical salvage for LR failure was attempted in 5 pts. Contralateral PG was spared in 98% of pts and ipsilateral PG in 54%. Concerning SMGs, 18 (26%) contralateral glands were spared and the ipsilateral SMG was spared in 5 pts. In other 13 (19%) pts doses to the SMGs below 50 Gy were obtained. The OC was spared to a dose ≤40 Gy in 26 pts (37%). None of the pts developed permanent xerostomia higher than grade 2 at the last follow-up visit.

Conclusions: The majority of LR failures occurred in-field within the high dose region. Sparing SMGs and OC in addition to PGs does not seem to jeopardize the LR control in HNC IMRT.

PO-0672

The prognostic impact of pretreatment dual-phase 18F-FDG-PET SUVmax in nasopharyngeal carcinoma

Y.T. Shih¹, Y. Lin², W.Y. Lin², J.C. Lin¹

¹Taichung Veterans General Hospital, Radiation Oncology

Department, Taichung, Taiwan

²Taichung Veterans General Hospital, Nuclear Medicine Department, Taichung, Taiwan

Purpose/Objective: To evaluate the role of pretreatment dual-phase ¹⁸F-FDG-PET maximum standardized uptake (SUVmax) in predicting the outcome of nasopharyngeal carcinoma (NPC).

Materials and Methods: A total of 140 patients with newly diagnosed NPC were prospectively treated with IMRT plus neoadjuvant or concurrent chemotherapy between January 2006 and December 2008. Pretreatment SUVmax at 60 minutes (SUV1) and 150 minutes (SUV2) after injection of ¹⁸F-FDG were collected. We investigated the effects of SUVmax of primary tumor (SUV1-primary, SUV-2-primary) and neck lymph nodes (SUV1-neck, SUV2-neck) on locoregional failure-free survival (LRFFS), distant metastasis failure-free survival (DMFFS) and overall survival (OS).

Results: In univariate analysis, the 5-year rate of OS for patients with SUV1-primary <12.9 was significantly higher than those with SUV1primary ?12.9 (87.0% and 72.2%, p=0.044). SUV2-primary, SUV1-neck and SUV2-neck did not affect OS significantly. All SUVs of primary tumor and neck lymph nodes have significant effects on DMFFS (SUV1primary < vs. ?12.5=89.1% vs. 70.8%, p=0.004; SUV2-primary < vs. ?12.8=88.6% vs. 76.4%, p=0.022; SUV1-neck < vs. ?8.1=91.0% vs. 71.8%, p=0.003; and SUV2-neck < vs. ?3.7=94.7% vs. 80.5%, p=0.024, respectively). All SUVs had no significant effect on LRFFS. In multivariate analysis, except for N stage, SUV1-primary, SUV2-primary and SUV1-neck were significantly independent predictors of DMFFS 95% Cl=1.447~12.855, p=0.009; hazard (hazard ratio=4.313, ratio=4.399, 95% CI=1.514~12.785, p=0.006; and hazard ratio=3.769, 95% CI=0.985~14.420, p=0.053, respectively).

Conclusions: The SUV1- primary predicts OS by univariate analysis. The SUV1-primary, SUV2-primary and SUV1-neck were independently prognostic factors of distant failure.

PO-0673

Accelerated Helical Tomotherapy versus RapidArc in a head and neck cancer treatment planning study

D. Van Gestel¹, G. De Kerf¹, W. Crijns², F. Van den Heuvel², B. De Ost¹, A. Coelmont¹, D. Van den Weyngaert¹, S. Nuyts¹, J.B.

Vermorken

¹ZNA/UZA, University Radiotherapy Department Antwerp (URA),

Antwerp, Belgium ²Leuvens Kankerinstituut, Radiation Oncology, Leuven, Belgium ³Antwerp University Hospital, Medical Oncology, Edegem, Belgium

Purpose/Objective: To create Helical Tomotherapy (HT) plans for t

treating patients with oropharyngeal cancer (OPC) with the same treatment time as RapidArc (RA) Volumetric Modulated Arc Therapy (VMAT).

Materials and Methods: We made both a double arc RA plan on Eclipse and a standard HT plan on TomoHD[™] according to the ICRU 83 guidelines in 5 OPC patients. In 32 fractions, a simultaneous integrated boost technique was planned to deliver 69.12 Gy (2,16 Gy / fraction) to the high risk volume (PTV of the GTV + 1cm) and 56 Gy (1.75 Gy / fraction) to the PTV of the remaining primary tumor region and the bilateral elective lymph node regions. Guidelines for all the organs at risk (OARs) were given. By modifying the beam width from $2.5\ {\rm cm}$ to $5.0\ {\rm cm},$ elevating the pitch and lowering the modulation factor, we created Tomo Fast (TF) plans in which treatment times were equal to those in the RA plans. The homogeneity index (HI), the

conformity index (CI), the mean dose, the Dnear-max (D2) and the Dnear-min (D98) of the PTVs were analyzed as well as the mean dose and specific critical doses and volumes of 26 OARs . Differences between the individual plans of the treatment planning systems were analyzed using repeated measures ANOVA.

Results: With a mean treatment time of 3.05 min for RA and 2.89 min for TF , PTV_{boost} coverage was more homogeneous with TF (mean HI .07; SE .01) than with RA (mean HI .10; SE .01). while $\text{PTV}_{\text{elective}}$ was most homogeneous with RA. Mean doses to the parotid glands were identical for RA and TF: 25.62 Gy and 25.34 Gy for the contralateral and 32.02 Gy and 31.96 Gy for the ipsilateral gland, respectively. Spinal cord, cricopharyngeal muscle and cranial part of the esophagus received a lower mean dose when planned with TF, the glottic larynx when planned with RA. V20 of the lungs, mean dose of inner ears, brain and eyes, and the integral dose were higher with TF than with RA, probably due the 5 cm beam width related cranial-caudal gradient extension. For details, see enclosed Table.

			Tomo Fast		RapidArc		TomoHD		as Be	H St.	Har
	n		mean	st	mean	sr	mean	st	1	ŧ	RA
Beam-on time (min)	5		2,89	9,06	2,50	6,00	5,94	6.37	<0.0001	<0.0001	<0.000
Treatment time (min)	5		2.83	8.06	3.05	6.00	5.94	6.37			
Monitor Units	5		2383.60	54,51	414,80	20.24	5051.80	WIND.	/0.0001	(0.0001	10.000
PTY 56	5	D2% (Gv)	67.08	6.28	63.41	6.76	67.14	628	0.0001	0.0001	0.000
F1 + 30	5	D5% (Gy)	65.76	6.32	61,81	965	65.55	642	<0.0001		<0.000
		D50% (Gv)	56.07	6.65	56.63	6.11	56.01	6.65	0.0001		<0.000
		D35% (Gv)	53.61	RM	53.67	85	54,46	6.54			
		D38% (Gy)	52,53	6.32	52,71	840	53,66	6.15		0.003	0.000
(35% of 56 Ge)		V53.2 Gy (cc)	400,18	32.24	411,72	24.65	408,98	N.W.	0.0064	0.021	
(107% of 56 Gy)		V59.9 Gy (%)	21,18	1.54	10,33	2,24	18,52	1.75	<0.0001		<0.00
PTV 69,12	5	D2% (Gy)	71,02	RN	72,09	我您	70,91	6,18	<0.0001		<0.000
		D5% (Gy)	70,63	610	71,65	6,08	70,45	6.15	<0.0001	1.	<0.000
		D50% (Gy)	69,15	9,65	69,31	9,92	69,10	9,01	0.0112	Sugar	<0.000
		D35% (Gy)	67,11	9.24	65,87	我好	67,80	6.81	0.0002	0.0398	<0.000
		D98% (Gy)	66,31	9,45	64,98	9,20	66,70	R.2.5	0.0019		<0.000
(35% of 63,12 Gy) Homogeneity index	5	V65.7 Gy (cc) PTV 56	246,12 0.26	59,04	242,93	58,30	248,63	69,55	0.0007	0.0276	0.008
nomodenenté indez		PTV 69	0,26	6.01	0,13	6.01	0,24	6.01	<0.0001	0.0216	<0.000
Conformite index	-5	PTV 56	1,52	6.65	1,45	6.67	1,45	6.05	(0.0001		(0.000
Conformity index	- 2	PTV 63	1,33	6.65	1,10	6,62	1,33	6,65	0.001	1	0.001
PRY Spinal cord	5	D2%(Ge)	36.63	110	42.66	621	34.12	6.55	<0.0001	1	<0.000
PRV Brainstem	ŝ	D2% (Gv)	38.45	6.55	42.23	2.57	30.47	6.75	10.0001	(0.0001	
Parotid gland contralateral	5	V27 Ge (%)	36,18	6.62	36,88	5.72	26.86	Ser			0.000
		mean dose (Gy)	25.34	3.74	25,62	1.62	21.65	600	1	1.	0.024
Parotid gland ipsilateral	5	V27 Gy (%)	52,72	\$43	50,44	4.04	33,13	2.16		0.027	0.000
		mean dose (Gy)	31,36	312	32,02	2,08	24,11	6.71		0.0178	0.001
Submandibular gland contralat	3	mean dose (Gy)	54,41	150	55,91	2,28	50,22	6.67			
Oral mecosa	5	V27 Gy (%)	93,16	348	86,30	11.24	74,30	7,21	1.0	0.0226	
		mean dose (Gy)	40,24	100	39,95	5.45	34,92	2,08		0.0073	0.049
Mandible	5	V60 Gy (%)	22,36	6.10	19,42	5,60	21,50	5.15			
Middle pharengeal constrictor	3	V55 Gy (%)	61,17	219.40	29,17	M.78	39,79	16.50			
		mean dose (Gy)	58,10	3,72	48,11	6.52	52,61	4.65		÷	
Lower phargageal constrictor	4	V55 Gy (%)	5,02	1,71	3,85	2,07	5,45	3,55			
Cricopharengeal muscle	5	mean dose (Gy) V55 Gy (%)	39,30	2,66	38,57	5.85	29,55	4.2V 8.00		A.	
Gricopharyngeal muscle		mean dose (Gy)	30.06	2,70	42,80	5.65	20.46	8,00 2,60	10 0001	0.0003	20.000
Oesophagus (cranial part)	5	V35 Ge (%)	15.36	6,55	76.42	18.11	7.31	2.56	<0.0001		<0.000
ocsopradas (citarias parci	-	mean dose (Gv)	27.25	2.51	41.19	371	18.85	1.00		k0.0001	
Supraglottic larges	5	mean dose (Gy)	45.70	2.21	36.48	346	36.00	SEL	0.0018	0.0008	10.000
Glottic larges	5	mean doce (Gu)	35.64	1.77	32,98	1.62	24.32	1.11		(0.0001	0.007:
langtop low	5	V20 Ge (%)	21,53	5.55	8,39	2.45	7,45	346	0.0049	0.002	
langtop high	5	V20 Gy (%)	27,75	6.76	13,11	5,00	10,83	4.82	0.0007	0.0004	
Brachial plexes low	5	mean dose (Gy)	34,29	2,15	34,13	2,50	30,20	1.10		0.0175	
Brachial plexus high	5	mean dose (Gy)	40,16	140	39,99	1.56	34,58	1.01	See.	<0.0001	<0.000
Inner ear low	5	mean dose (Gy)	24,63	2,62	6,88	9.75	12,19	2.04	<0.0001		*
Inner ear high	5	mean dose (Gy)	30,82	1.54	3,80	1.11	13,68	1.11		<0.0001	0.000
Brain - PRV brainstem	5	mean dose (Gy)	7,36	1.05	3,33	9,56	3,83	R.18		0.0006	1
Skin near PTV	5	D2% (Gy)	64,27	2,42	57,53	2,06	63,89	2,74	<0.0001		<0.000
Eve low	5	mean dose (Gy) mean dose (Gy)	42,79	1,28	36,56	1.50	40,19	140		<0.0001	<0.000
Eye low	5	mean dose (Gy)	4,38 6,65	1.35	1,88	821 828	2,13	625		0.0018	*
Shoulder low	5	D2% (Gu)	10.46	6,50	8.83	1.10	3.41	6.72	0.0023	0,0016	
Shoulder high	5	D2% (Gv)	12.23	1.30	13,36	5.00	11.24	100			
Non specified tissue	5	D2% (Gv)	34.73	148	37.40	2.17	32.37	2.15	-		
		mean dose (Gy)	10.41	1.37	7,64	123	7,43	101	0.0002	0.0002	
Body	5	mean dose (Gy)	19,22	2.20	15,93	24.5	16.00	1.65	0.0005	0.0005	
(35% of 56 Ge)		V53.2 Gy (cc)	383,33	122.0V	972,47	19.82	954,74	118.06			
(35% of 63,12 Gy)		V65.7 Gy (cc)	319,89	69,59	271,71	65,00	323,81	72,25	<0.0001	1.	k0.000
Bode - PTV	5		16.18	1.65	13.01	175	13.10	120	0.0001	0.0028	

Conclusions: This study shows that it is possible to treat OPC patients with TF as fast as with RA while giving comparable target coverage and sparing of most critical organs. However, with TF the higher dose to the organs at the cranial and caudal end of the target volume and the higher integral dose, both due to the extended cranial-caudal gradient, needs consideration. Moreover, compared to regular HT, both these faster techniques lose a (major) part of HT's OAR sparing capacity.

PO-0674

Understanding the impact of two pharyngeal axis delineation guidelines for planning definition in head & neck IMRT N. Anderson¹, M. Wada⁷, M. Schneider-Kolsky², M. Rolfo¹, D. Scandurra¹, D. Lim Joon¹, V. Khoo³ ¹Olivia Newton John Cancer & Wellness Centre/Austin Health, Radiation Oncology Department, Heidelberg, Australia

²Monash University, Department of Medical Imaging and Radiation Sciences, Melbourne, Australia

³Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Department of Clinical Oncology, London, United Kingdom

Purpose/Objective: Optimisation of swallowing outcome after curative radiotherapy is multifaceted and requires maintaining the functional integrity of multiple pharyngeal axis structures. Recent dose/volume/outcome data (DVO)demonstrates a correlation between laryngeal dose and late dysphagia complication. Accurate and reliable DVO data demands consistent delineation, yet several guidelines for the delineation of the pharyngeal axis exist. This is a comparative study of two delineation guidelines of the pharyngeal axis and the implications that differences between them may have on dosimetry.

Materials and Methods: The pharyngeal axis (inclusive of superior (SPCM), middle (MPCM) and inferior pharyngeal constrictors (IPCM), cricopharyngeus(CP), oesophageal inlet (OI)) were retrospectively contoured by one clinician on five consecutive patients with SCC head and neck, utilising two different sets of delineation guidelines (G1 (1)