35 research outputs found

    Combining Nitrous Oxide with Carbon Dioxide Decreases the Time to Loss of Consciousness during Euthanasia in Mice — Refinement of Animal Welfare?

    Get PDF
    Carbon dioxide (CO2) is the most commonly used euthanasia agent for rodents despite potentially causing pain and distress. Nitrous oxide is used in man to speed induction of anaesthesia with volatile anaesthetics, via a mechanism referred to as the “second gas” effect. We therefore evaluated the addition of Nitrous Oxide (N2O) to a rising CO2 concentration could be used as a welfare refinement of the euthanasia process in mice, by shortening the duration of conscious exposure to CO2. Firstly, to assess the effect of N2O on the induction of anaesthesia in mice, 12 female C57Bl/6 mice were anaesthetized in a crossover protocol with the following combinations: Isoflurane (5%)+O2 (95%); Isoflurane (5%)+N2O (75%)+O2 (25%) and N2O (75%)+O2 (25%) with a total flow rate of 3l/min (into a 7l induction chamber). The addition of N2O to isoflurane reduced the time to loss of the righting reflex by 17.6%. Secondly, 18 C57Bl/6 and 18 CD1 mice were individually euthanized by gradually filling the induction chamber with either: CO2 (20% of the chamber volume.min−1); CO2+N2O (20 and 60% of the chamber volume.min−1 respectively); or CO2+Nitrogen (N2) (20 and 60% of the chamber volume.min−1). Arterial partial pressure (Pa) of O2 and CO2 were measured as well as blood pH and lactate. When compared to the gradually rising CO2 euthanasia, addition of a high concentration of N2O to CO2 lowered the time to loss of righting reflex by 10.3% (P<0.001), lead to a lower PaO2 (12.55±3.67 mmHg, P<0.001), a higher lactataemia (4.64±1.04 mmol.l−1, P = 0.026), without any behaviour indicative of distress. Nitrous oxide reduces the time of conscious exposure to gradually rising CO2 during euthanasia and hence may reduce the duration of any stress or distress to which mice are exposed during euthanasia

    Some Aspects of Protozoan Infections in Immunocompromised Patients: A Review

    Full text link

    Refinement of intraperitoneal injection of sodium pentobarbital for euthanasia in laboratory rats (Rattus norvegicus)

    No full text
    BACKGROUND: The Canadian Council on Animal Care and American Veterinary Medical Association classify intraperitoneal (IP) pentobarbital as an acceptable euthanasia method in rats. However, national guidelines do not exist for a recommended dose or volume and IP euthanasia has been described as unreliable, with misinjections leading to variable success in ensuring a timely death. The aims of this study were to assess and improve efficacy and consistency of IP euthanasia. In a randomized, blinded study, 51 adult female Sprague-Dawley rats (170–495 g) received one of four treatments: low-dose low-volume (LL) IP pentobarbital (n = 13, 200 mg/kg pentobarbital), low-dose high-volume (LH) IP pentobarbital (n = 14, 200 mg/kg diluted 1:3 with phosphate buffered saline), high-dose high-volume (HH, n = 14, 800 mg/kg pentobarbital), or saline. Times to loss of righting reflex (LORR) and cessation of heartbeat (CHB) were recorded. To identify misinjections, necropsy examinations were performed on all rats. Video recordings of LL and HH groups were analyzed for pain-associated behaviors. Between-group comparisons were performed with 1-way ANOVA and Games-Howell post hoc tests. Variability in CHB was assessed by calculating the coefficient of variation (CV). RESULTS: The fastest euthanasia method (CHB) was HH (283.7 ± 38.0 s), compared with LL (485.8 ± 140.7 s, p = 0.002) and LH (347.7 ± 72.0 s, p = 0.039). Values for CV were: HH, 13.4%; LH, 20.7%; LL, 29.0%. LORR time was longest in LL (139.5 ± 29.6 s), compared with HH (111.6 ± 19.7 s, p = 0.046) and LH (104.2 ± 19.3 s, p = 0.01). Misinjections occurred in 17.0% (7/41) of euthanasia attempts. Pain-associated behavior incidence ranged from 36% (4/11, LL) to 46% (5/11, HH). CONCLUSIONS: These data illustrate refinement of the IP pentobarbital euthanasia technique. Both dose and volume contribute to speed of death, with a dose of 800 mg/kg (HH) being the most effective method. An increase in volume alone does not significantly reduce variability. The proportion of misinjections was similar to that of previous studies
    corecore