789 research outputs found

    On a three-body confinement force in hadron spectroscopy

    Get PDF
    Recently it has been argued that a three-body colour confinement interaction can affect the stability condition of a three-quark system and the spectrum of a tetraquark described by any constituent quark model. Here we discuss the role of a three-body colour confinement interaction in a simple quark model and present some of its implications for the spectra of baryons, tetraquarks and six-quark systems.Comment: 19 pages (RevTeX), addition of new material regarding the NN interaction, more accurate discussion of the baryonic case, accepted for publication in Phys. Rev.

    NN interaction in a Goldstone boson exchange model

    Full text link
    Adiabatic nucleon-nucleon potentials are calculated in a six-quark nonrelativistic chiral constituent quark model where the Hamiltonian contains a linear confinement and a pseudoscalar meson (Goldstone boson) exchange interaction between quarks. Calculations are performed both in a cluster model and a molecular orbital basis, through coupled channels. In both cases the potentials present an important hard core at short distances, explained through the dominance of the [51]_{FS} configuration, but do not exhibit an attractive pocket. We add a scalar meson exchange interaction and show how it can account for some middle-range attraction.Comment: 32 pages with 12 eps figures incorporated, RevTeX. Final version published in PR

    Strange Decays of Nonstrange Baryons

    Get PDF
    The strong decays of excited nonstrange baryons into the final states Lambda K, Sigma K, and for the first time into Lambda(1405) K, Lambda(1520) K, Sigma(1385) K, Lambda K*, and Sigma K*, are examined in a relativized quark pair creation model. The wave functions and parameters of the model are fixed by previous calculations of N pi and N pi pi, etc., decays. Our results show that it should be possible to discover several new negative parity excited baryons and confirm the discovery of several others by analyzing these final states in kaon production experiments. We also establish clear predictions for the relative strengths of certain states to decay to Lambda(1405) K and Lambda(1520) K, which can be tested to determine if a three-quark model of the Lambda(1405) K is valid. Our results compare favorably with the results of partial wave analyses of the limited existing data for the Lambda K and Sigma K channels. We do not find large Sigma K decay amplitudes for a substantial group of predicted and weakly established negative-parity states, in contrast to the only previous work to consider decays of these states into the strange final states Lambda K and Sigma K.Comment: 25 pages, 8 figures, RevTe

    On the consistent solution of the gap--equation for spontaneously broken λΦ4\lambda \Phi^4-theory

    Full text link
    We present a self--consistent solution of the finite temperature gap--equation for λΦ4\lambda \Phi^4 theory beyond the Hartree-Fock approximation using a composite operator effective action. We find that in a spontaneously broken theory not only the so--called daisy and superdaisy graphs contribute to the resummed mass, but also resummed non--local diagrams are of the same order, thus altering the effective mass for small values of the latter.Comment: 15 pages of revtex + 3 uuencoded postscript figures, ENSLAPP A-488/9

    A Letter of Intent to Build a MiniBooNE Near Detector: BooNE

    Full text link
    There is accumulating evidence for a difference between neutrino and antineutrino oscillations at the 1\sim 1 eV2^2 scale. The MiniBooNE experiment observes an unexplained excess of electron-like events at low energies in neutrino mode, which may be due, for example, to either a neutral current radiative interaction, sterile neutrino decay, or to neutrino oscillations involving sterile neutrinos and which may be related to the LSND signal. No excess of electron-like events (0.5±7.8±8.7-0.5 \pm 7.8 \pm 8.7), however, is observed so far at low energies in antineutrino mode. Furthermore, global 3+1 and 3+2 sterile neutrino fits to the world neutrino and antineutrino data suggest a difference between neutrinos and antineutrinos with significant (sin22θμμ35\sin^22\theta_{\mu \mu} \sim 35%) νˉμ\bar \nu_\mu disappearance. In order to test whether the low-energy excess is due to neutrino oscillations and whether there is a difference between νμ\nu_\mu and νˉμ\bar \nu_\mu disappearance, we propose building a second MiniBooNE detector at (or moving the existing MiniBooNE detector to) a distance of 200\sim 200 m from the Booster Neutrino Beam (BNB) production target. With identical detectors at different distances, most of the systematic errors will cancel when taking a ratio of events in the two detectors, as the neutrino flux varies as 1/r21/r^2 to a calculable approximation. This will allow sensitive tests of oscillations for both νe\nu_e and νˉe\bar \nu_e appearance and νμ\nu_\mu and νˉμ\bar \nu_\mu disappearance. Furthermore, a comparison between oscillations in neutrino mode and antineutrino mode will allow a sensitive search for CP and CPT violation in the lepton sector at short baseline (Δm2>0.1\Delta m^2 > 0.1 eV2^2).Comment: 43 pages, 40 figure

    Search for π0νμνˉμ\pi^0 \to \nu_{\mu}\bar\nu_{\mu} Decay in LSND

    Get PDF
    We observe a net beam-excess of 8.7±6.38.7 \pm 6.3 (stat) ±2.4\pm 2.4 (syst) events, above 160 MeV, resulting from the charged-current reaction of νμ\nu_{\mu} and/or νˉμ\bar\nu_{\mu} on C and H in the LSND detector. No beam related muon background is expected in this energy regime. Within an analysis framework of π0νμνˉμ\pi^0 \to \nu_{\mu}\bar\nu_{\mu}, we set a direct upper limit for this branching ratio of Γ(π0νμνˉμ)/Γ(π0all)<1.6×106\Gamma(\pi^0 \to \nu_\mu \bar\nu_\mu) / \Gamma(\pi^0 \to all) < 1.6 \times 10^{-6} at 90% confidence level.Comment: 4 pages, 4 figure

    Zero mode in the time-dependent symmetry breaking of λϕ4\lambda\phi^4 theory

    Full text link
    We apply the quartic exponential variational approximation to the symmetry breaking phenomena of scalar field in three and four dimensions. We calculate effective potential and effective action for the time-dependent system by separating the zero mode from other non-zero modes of the scalar field and treating the zero mode quantum mechanically. It is shown that the quantum mechanical properties of the zero mode play a non-trivial role in the symmetry breaking of the scalar λϕ4\lambda \phi^4 theory.Comment: 10 pages, 3 figure

    Tests of Lorentz violation in muon antineutrino to electron antineutrino oscillations

    Get PDF
    A recently developed Standard-Model Extension (SME) formalism for neutrino oscillations that includes Lorentz and CPT violation is used to analyze the sidereal time variation of the neutrino event excess measured by the Liquid Scintillator Neutrino Detector (LSND) experiment. The LSND experiment, performed at Los Alamos National Laboratory, observed an excess, consistent with neutrino oscillations, of νˉe{\bar\nu}_e in a beam of νˉμ{\bar\nu}_\mu. It is determined that the LSND oscillation signal is consistent with no sidereal variation. However, there are several combinations of SME coefficients that describe the LSND data; both with and without sidereal variations. The scale of Lorentz and CPT violation extracted from the LSND data is of order 101910^{-19} GeV for the SME coefficients aLa_L and E×cLE \times c_L. This solution for Lorentz and CPT violating neutrino oscillations may be tested by other short baseline neutrino oscillation experiments, such as the MiniBooNE experiment.Comment: 10 pages, 10 figures, 2 tables, uses revtex4 replaced with version to be published in Physical Review D, 11 pages, 11 figures, 2 tables, uses revtex

    The Threshold Pion-Photoproduction of Nucleons In The Chiral Quark Model

    Full text link
    In this paper, we show that the low energy theorem (LET) of the threshold pion-photoproduction can be fully recovered in the quark model. An essential result of this investigation is that the quark-pion operators are obtained from the effective chiral Lagrangian, and the low energy theorem does not require the constraints on the internal structures of the nucleon. The pseudoscalar quark-pion coupling generates an additional term at order μ=mπ/M\mu=m_{\pi}/M only in the isospin amplitude A()A^{(-)}. The role of the transitions between the nucleon and the resonance P33(1232)P_{33}(1232) and P-wave baryons are also discussed, we find that the leading contributions to the isospin amplitudes at O(μ2)O(\mu^2) are from the transition between the P-wave baryons and the nucleon and the charge radius of the nucleon. The leading contribution from the P-wave baryons only affects the neutral pion production, and improve the agreement with data significantly. The transition between the resonance P33(1232)P_{33}(1232) and the nucleon only gives an order μ3\mu^3 corrections to A()A^{(-)}
    corecore