19,155 research outputs found

    Variations in the Cyclotron Resonant Scattering Features during 2011 outburst of 4U 0115+63

    Full text link
    We study the variations in the Cyclotron Resonant Scattering Feature (CRSF) during 2011 outburst of the high mass X-ray binary 4U 0115+63 using observations performed with Suzaku, RXTE, Swift and INTEGRAL satellites. The wide-band spectral data with low energy coverage allowed us to characterize the broadband continuum and detect the CRSFs. We find that the broadband continuum is adequately described by a combination of a low temperature (kT ~ 0.8 keV) blackbody and a power-law with high energy cutoff (Ecut ~ 5.4 keV) without the need for a broad Gaussian at ~ 10 keV as used in some earlier studies. Though winds from the companion can affect the emission from the neutron star at low energies (< 3 keV), the blackbody component shows a significant presence in our continuum model. We report evidence for the possible presence of two independent sets of CRSFs with fundamentals at ~ 11 keV and ~ 15 keV. These two sets of CRSFs could arise from spatially distinct emitting regions. We also find evidence for variations in the line equivalent widths, with the 11 keV CRSF weakening and the 15 keV line strengthening with decreasing luminosity. Finally, we propose that the reason for the earlier observed anti-correlation of line energy with luminosity could be due to modelling of these two independent line sets (~ 11 keV and ~ 15 keV) as a single CRSF.Comment: 12 pages, 8 figures (4 in colour), 6 tables. Accepted for publication in MNRAS. Typos corrected, Figure 8 changed and some changes to draf

    Suppression of complete fusion due to breakup in the reactions 10,11^{10,11}B + 209^{209}Bi

    Full text link
    Above-barrier cross sections of α\alpha-active heavy reaction products, as well as fission, were measured for the reactions of 10,11^{10,11}B with 209^{209}Bi. Detailed analysis showed that the heavy products include components from incomplete fusion as well as complete fusion (CF), but fission originates almost exclusively from CF. Compared with fusion calculations without breakup, the CF cross sections are suppressed by 15% for 10^{10}B and 7% for 11^{11}B. A consistent and systematic variation of the suppression of CF for reactions of the weakly bound nuclei 6,7^{6,7}Li, 9^{9}Be, 10,11^{10,11}B on targets of 208^{208}Pb and 209^{209}Bi is found as a function of the breakup threshold energy

    Chiral condensate and dressed Polyakov loop in the Nambu--Jona-Lasinio model

    Full text link
    We investigate the chiral condensate and the dressed Polyakov loop or dual chiral condensate at finite temperature and density in two-flavor Nambu--Jona-Lasinio model. The dressed Polyakov loop is regarded as an equivalent order parameter of deconfinement phase transition in a confining theory. We find the behavior of dressed Polyakov loop in absence of any confinement mechanism is quite interesting, with only quark degrees of freedom present, it still shows an order parameter like behavior. It is found that in the chiral limit, the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop in the whole (T,μ)(T,\mu) plane. In the case of explicit chiral symmetry breaking, it is found that the transition temperature for chiral restoration TcχT_c^{\chi} is smaller than that of the dressed Polyakov loop TcDT_c^{{\cal D}} in the low baryon density region where the transition is a crossover. With the increase of current quark mass the difference between the two transition temperatures is found to be increasing. However, the two critical temperatures coincide in the high baryon density region where the phase transition is of first order. We give an explanation on the feature of Tcχ=TcDT_c^{\chi}=T_c^{\cal D} in the case of 1st and 2nd order phase transitions, and Tcχ<TcDT_c^{\chi}<T_c^{\cal D} in the case of crossover, and expect this feature is general and can be extended to full QCD theory. Our result might indicate that in the case of crossover, there exists a small region where chiral symmetry is restored but the color degrees of freedom are still confined.Comment: 7 pages, 10 figure

    Thermodynamics of the PNJL model with nonzero baryon and isospin chemical potentials

    Full text link
    We have extended the Polyakov-Nambu-Jona-Lasinio (PNJL) model for two degenerate flavours to include the isospin chemical potential (μI\mu_I). All the diagonal and mixed derivatives of pressure with respect to the quark number (proportional to baryon number) chemical potential (μ0\mu_0) and isospin chemical potential upto sixth order have been extracted at μ0=μI=0\mu_0 = \mu_I = 0. These derivatives give the generalized susceptibilities with respect to quark and isospin numbers. Similar estimates for the flavour diagonal and off-diagonal susceptibilities are also presented. Comparison to Lattice QCD (LQCD) data of some of these susceptibilities for which LQCD data are available, show similar temperature dependence, though there are some quantitative deviations above the crossover temperature. We have also looked at the effects of instanton induced flavour-mixing coming from the UA(1)U_A(1) chiral symmetry breaking 't Hooft determinant like term in the NJL part of the model. The diagonal quark number and isospin susceptibilities are completely unaffected. The off-diagonal susceptibilities show significant dependence near the crossover. Finally we present the chemical potential dependence of specific heat and speed of sound within the limits of chemical potentials where neither diquarks nor pions can condense.Comment: 15 pages, 7 figures, Added discussions and references, version to appear in Phys. Rev.

    The electron electric dipole moment enhancement factors of Rubidium and Caesium atoms

    Full text link
    The enhancement factors of the electric dipole moment (EDM) of the ground states of two paramagnetic atoms; rubidium (Rb) and caesium (Cs) which are sensitive to the electron EDM are computed using the relativistic coupled-cluster theory and our results are compared with the available calculations and measurements. The possibility of improving the limit for the electron EDM using the results of our present work is pointed out.Comment: AISAMP7 Conference paper, Accepted in Journal of Physics: Conference Series: 200

    Microscopic theories for cubic and tetrahedral superconductors: application to PrOs_4Sb_{12}

    Full text link
    We examine weak-coupling theory for unconventional superconducting states of cubic or tetrahedral symmetry for arbitrary order parameters and Fermi surfaces and identify the stable states in zero applied field. We further examine the possibility of having multiple superconducting transitions arising from the weak breaking of a higher symmetry group to cubic or tetrahedral symmetry. Specifically, we consider two higher symmetry groups. The first is a weak crystal field theory in which the spin-singlet Cooper pairs have an approximate spherical symmetry. The second is a weak spin orbit coupling theory for which spin-triplet Cooper pairs have a cubic orbital symmetry and an approximate spherical spin rotational symmetry. In hexagonal UPt_3, these theories easily give rise to multiple transitions. However, we find that for cubic materials, there is only one case in which two superconducting transitions occur within weak coupling theory. This sequence of transitions does not agree with the observed properties of PrOs_4Sb_{12}. Consequently, we find that to explain two transitions in PrOs_4Sb_{12} using approximate higher symmetry groups requires a strong coupling theory. In view of this, we finally consider a weak coupling theory for which two singlet representations have accidentally nearly degenerate transition temperatures (not due to any approximate symmetries). We provide an example of such a theory that agrees with the observed properties of PrOs_4Sb_{12}.Comment: 11 pages,1 figur

    Spin analog of the controlled Josephson charge current

    Full text link
    We propose a controlled Josephson spin current across the junction of two non-centrosymmetric superconductors like CePt_3Si. The Josephson spin current arises due to direction dependent tunneling matrix element and different momentum dependent phases of the triplet components of the gap function. Its modulation with the angle \xi between the noncentrosymmetric axes of two superconductors is proportional to \sin \xi. This particular dependence on \xi may find application of the proposed set-up in making a Josephson spin switch.Comment: 4 pages, 1 figure; title is changed; article is rewritte
    corecore