126 research outputs found

    Downregulation of pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexose-phosphate levels

    Get PDF
    Analyses of transgenic sugarcane clones with 45–95% reduced cytosolic pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) activity displayed no visual phenotypical change, but significant changes were evident in in vivo metabolite levels and fluxes during internode development. In three independent transgenic lines, sucrose concentrations increased between three- and sixfold in immature internodes, compared to the levels in the wildtype control. There was an eightfold increase in the hexose-phosphate:triose-phosphate ratio in immature internodes, a significant restriction in the triose phosphate to hexose phosphate cycle and significant increase in sucrose cycling as monitored by 13C nuclear magnetic resonance. This suggests that an increase in the hexose-phosphate concentrations resulting from a restriction in the conversion of hexose phosphates to triose phosphates drive sucrose synthesis in the young internodes. These effects became less pronounced as the tissue matured. Decreased expression of PFP also resulted in an increase of the ATP/ADP and UTP/UDP ratios, and an increase of the total uridine nucleotide and, at a later stage, the total adenine nucleotide pool, revealing strong interactions between PPi metabolism and general energy metabolism. Finally, decreased PFP leads to a reduction of PPi levels in older internodes indicating that in these developmental stages PFP acts in the gluconeogenic direction. The lowered PPi levels might also contribute to the absence of increases in sucrose contents in the more mature tissues of transgenic sugarcane with reduced PFP activity

    Altersabh�ngigkeit der Nierenh�modynamik

    No full text

    Beeinflussung renal tubulärer Substanztransporte durch Furosemid

    No full text

    Modeling and chemical vapor deposition in a fluidized bed reactor based on discrete particle simulation

    Get PDF
    For better understanding the process of particle coating by chemical vapor deposition (CVD) in the fluidized bed, the simulation of the deposition process was combined with a discrete particle model (DPM). Based on the experimental results of the thermal decomposition of tri-isobutyl-aluminum (TIBA) to produce aluminum onto glass beads, mechanisms on the micro-scale were investigated by single particle tracking. Zones of excessive growth as well as zones of insufficient mixing were identified. In particular, the take-up of aluminum was traced for selected particles that exhibited a large mass of deposited aluminum what in turn provides insight into the homogeneity and quantity of the coating throughout the bed material
    corecore