17 research outputs found

    Bounds on Bess Model Parameters from Vector-Boson Production in e+e- Collisions

    Full text link
    The BESS model is the Higgs-less alternative to the standard model of electroweak interaction, based on nonlinearly realized spontaneous symmetry breaking. Since it is nonrenormalizable, new couplings (not existing in the SM) are induced at each loop order. On the basis of the one loop induced vector-boson self-couplings we study the two- and three-vector-boson-production processes in e+ee^+e^- collisions at s=500GeV\sqrt{s}=500 GeV, the expected energy of the next e+e e^+e^- linear collider (NLC). Assuming that NLC results will agree with the SM predictions within given accuracy we identify the bounds for the free parameters of the BESS model.Comment: December 1992, 8 pages LaTeX, 6 figures (not included but available on request), BI-TP 92/59, LMU-92/1

    Consistent Group and Coset Reductions of the Bosonic String

    Full text link
    Dimensional reductions of pure Einstein gravity on cosets other than tori are inconsistent. The inclusion of specific additional scalar and p-form matter can change the situation. For example, a D-dimensional Einstein-Maxwell-dilaton system, with a specific dilaton coupling, is known to admit a consistent reduction on S^2= SU(2)/U(1), of a sort first envisaged by Pauli. We provide a new understanding, by showing how an S^3=SU(2) group-manifold reduction of (D+1)-dimensional Einstein gravity, of a type first indicated by DeWitt, can be broken into in two steps; a Kaluza-type reduction on U(1) followed by a Pauli-type coset reduction on S^2. More generally, we show that any D-dimensional theory that itself arises as a Kaluza U(1) reduction from (D+1) dimensions admits a consistent Pauli reduction on any coset of the form G/U(1). Extensions to the case G/H are given. Pauli coset reductions of the bosonic string on G= (G\times G)/G are believed to be consistent, and a consistency proof exists for S^3=SO(4)/SO(3). We examine these reductions, and arguments for consistency, in detail. The structures of the theories obtained instead by DeWitt-type group-manifold reductions of the bosonic string are also studied, allowing us to make contact with previous such work in which only singlet scalars are retained. Consistent truncations with two singlet scalars are possible. Intriguingly, despite the fact that these are not supersymmetric models, if the group manifold has dimension 3 or 25 they admit a superpotential formulation, and hence first-order equations yielding domain-wall solutions.Comment: Latex, 5 figures, 45 pages, minor correction

    Low Energy 6-Dimensional N=2 Supersymmertric SU(6) Models on T2T^2 Orbifolds

    Get PDF
    We propose low energy 6-dimensional N=2 supersymmetric SU(6) models on M4×T2/(Z2)3M^4\times T^2/(Z_2)^3 and M4×T2/(Z2)4M^4\times T^2/(Z_2)^4, where the orbifold SU(3)C×SU(3)SU(3)_C\times SU(3) model can be embedded on the boundary 4-brane. For the zero modes, the 6-dimensional N=2 supersymmetry and the SU(6) gauge symmetry are broken down to the 4-dimensional N=1 supersymmetry and the SU(3)C×SU(2)L×U(1)Y×U(1)SU(3)_C\times SU(2)_L\times U(1)_Y\times U(1)' gauge symmetry by orbifold projections. In order to cancel the anomalies involving at least one U(1)U(1)', we add extra exotic particles. We also study the anomaly free conditions and present some anomaly free models. The gauge coupling unification can be achieved at 100200100\sim 200 TeV if the compactification scale for the fifth dimension is 343\sim 4 TeV. The proton decay problem can be avoided by putting the quarks and leptons/neutrinos on different 3-branes. And we discuss how to break the SU(3)C×SU(2)L×U(1)Y×U(1)SU(3)_C\times SU(2)_L\times U(1)_Y\times U(1)' gauge symmetry, solve the μ\mu problem, and generate the ZZZ-Z' mass hierarchy naturally by using the geometry. The masses of exotic particles can be at the order of 1 TeV after the gauge symmetry breaking. We also forbid the dimension-5 operators for the neutrino masses by U(1)U(1)' gauge symmetry, and the realistic left-handed neutrino masses can be obtained via non-renormalizable terms.Comment: Latex, 33 pages, discussion and references adde

    Intersecting D-Branes on Shift Z2 x Z2 Orientifolds

    Full text link
    We investigate Z2 x Z2 orientifolds with group actions involving shifts. A complete classification of possible geometries is presented where also previous work by other authors is included in a unified framework from an intersecting D-brane perspective. In particular, we show that the additional shifts not only determine the topology of the orbifold but also independently the presence of orientifold planes. In the second part, we work out in detail a basis of homological three cycles on shift Z2 x Z2 orientifolds and construct all possible fractional D-branes including rigid ones. A Pati-Salam type model with no open-string moduli in the visible sector is presented.Comment: 36 pages, 4 figures, refs. adde

    μ\mu-term as the origin of baryon and lepton number asymmetry

    Full text link
    We study a possibility of combining an origin of the μ\mu-term and the baryon and lepton number asymmetry. If we assume that the μ\mu-term is generated through a flat direction of a singlet scalar field, the coherent oscillation of this condensate around its potential minimum can store the global U(1) charge asymmetry. The decay of this condensate can distribute this asymmetry into the lepton and baryon number asymmetry as far as its decay occurs at an appropriate temperature. We examine the compatibility between this scenario and the small neutrino mass generation based on both the ordinary seesaw mechanism and the bilinear R-parity violating terms.Comment: 22 pages, published versio

    Determination of αs\alpha_s from Gross-Llewellyn Smith sum rule by accounting for infrared renormalon

    Full text link
    We recapitulate the method which resums the truncated perturbation series of a physical observable in a way which takes into account the structure of the leading infrared renormalon. We apply the method to the Gross-Llewellyn Smith (GLS) sum rule. By confronting the obtained result with the experimentally extracted GLS value, we determine the value of the QCD coupling parameter which turns out to agree with the present world average.Comment: invited talk by G.C. in WG3 of NuFact02, July 1-6, 2002, London; 4 pages, revte

    Signals of Unconventional E6_6 Models at e+ee^+e^- Colliders

    Full text link
    Generation dependent discrete symmetries often appear in models derived from superstring theories. In particular, in the framework of E6_6 models the presence of such symmetries is required in order to allow for the radiative generation of naturally small neutrino masses. Recently it was shown that by imposing suitable generation dependent discrete symmetries, a class of models can be consistently constructed in which the three sets of known fermions in each generation do not have the same assignments with respect to the {\bf 27} representation of E6_6. In this scenario, the different embedding in the gauge group of the three generations implies in particular that the known charged leptons couple in a non--universal way to the new neutral gauge bosons (Zβ)(Z_\beta) present in these models. We exploit this fact to study the signature of this class of models at present and future e+ee^+e^- colliders. We show that some signals of deviation from lepton universality as well as some other discrepancies with the standard model predictions which have been observed at the TRISTAN collider in the production rate of μ\mu and τ\tau, can be accounted for if the ZβZ_\beta mass is not much heavier than 300 GeV. We also study the discovery limits for lepton universality violation of this type at LEP-2 and at the 500 GeV e+ee^+e^- Next Linear Collider (NLC). We show that models predicting unconventional assignments for the leptons will give an unmistakable signature, when the ZβZ_\beta mass is as heavy as 800\sim 800 GeV (LEP-2) and 2\sim 2 TeV (NLC).Comment: Plain Tex, 20 pages. 4 PostScript figures (uses `epsf.tex'). Modified file-format. No changes in the tex

    Quantum Mechanics of Yano tensors: Dirac equation in curved spacetime

    Full text link
    In spacetimes admitting Yano tensors the classical theory of the spinning particle possesses enhanced worldline supersymmetry. Quantum mechanically generators of extra supersymmetries correspond to operators that in the classical limit commute with the Dirac operator and generate conserved quantities. We show that the result is preserved in the full quantum theory, that is, Yano symmetries are not anomalous. This was known for Yano tensors of rank two, but our main result is to show that it extends to Yano tensors of arbitrary rank. We also describe the conformal Yano equation and show that is invariant under Hodge duality. There is a natural relationship between Yano tensors and supergravity theories. As the simplest possible example, we show that when the spacetime admits a Killing spinor then this generates Yano and conformal Yano tensors. As an application, we construct Yano tensors on maximally symmetric spaces: they are spanned by tensor products of Killing vectors.Comment: 1+32 pages, no figures. Accepted for publication on Classical and Quantum Gravity. New title and abstract. Some material has been moved to the Appendix. Concrete formulas for Yano tensors on some special holonomy manifolds have been provided. Some corrections included, bibliography enlarge

    Quantum Liouville theory and BTZ black hole entropy

    Full text link
    In this paper I give an explicit conformal field theory description of (2+1)-dimensional BTZ black hole entropy. In the boundary Liouville field theory I investigate the reducible Verma modules in the elliptic sector, which correspond to certain irreducible representations of the quantum algebra U_q(sl_2) \odot U_{\hat{q}}(sl_2). I show that there are states that decouple from these reducible Verma modules in a similar fashion to the decoupling of null states in minimal models. Because ofthe nonstandard form of the Ward identity for the two-point correlation functions in quantum Liouville field theory, these decoupling states have positive-definite norms. The explicit counting from these states gives the desired Bekenstein-Hawking entropy in the semi-classical limit when q is a root of unity of odd order.Comment: LaTeX, 33 pages, 4 eps figure

    Geons with spin and charge

    Full text link
    We construct new geon-type black holes in D>3 dimensions for Einstein's theory coupled to gauge fields. A static nondegenerate vacuum black hole has a geon quotient provided the spatial section admits a suitable discrete isometry, and an antisymmetric tensor field of rank 2 or D-2 with a pure F^2 action can be included by an appropriate (and in most cases nontrivial) choice of the field strength bundle. We find rotating geons as quotients of the Myers-Perry(-AdS) solution when D is odd and not equal to 7. For other D we show that such rotating geons, if they exist at all, cannot be continuously deformed to zero angular momentum. With a negative cosmological constant, we construct geons with angular momenta on a torus at the infinity. As an example of a nonabelian gauge field, we show that the D=4 spherically symmetric SU(2) black hole admits a geon version with a trivial gauge bundle. Various generalisations, including both black-brane geons and Yang-Mills theories with Chern-Simons terms, are briefly discussed.Comment: 26 pages, 1 figure. LaTeX with amssymb, amsmath. (v2: References and a figure added.
    corecore