133 research outputs found

    The REM Telescope: A robotic multiwavelength facility to promptly follow up GRB afterglows

    Get PDF
    The REM (Rapid Eye Mount) Telescope, located in la Silla Observatory Chile, is the first moderate (60 cm) aperture robotic telescope able to cover simultaneously both the visible and near-infrared (0.45–2.3 ÎŒm) wavelength range. The high-throughput Infrared Camera (REMIR) and the optical imaging spectrograph (ROSS), both equipping the REM telescope, are simultaneously fed by a dichroic and they allow to collect high-S/N data in an unprecedented large spectral range on a telescope of this size. The wide band covered, the very fast pointing capability (60 degrees in 5 seconds) and its full robotization make REM the ideal experiment for fast transients observation. The REM observatory is an example of a versatile and agile facility necessary to complement large telescopes in fields in which rapid response and/or target pre-screening are necessary. This paper describes the main characteristics and operation modes of the REM observatory and gives an overview of preliminary results obtained during the Science Verification Phase

    The Active Corona of HD 35850 (F8 V)

    Get PDF
    We present Extreme Ultraviolet Explorer spectroscopy and photometry of the nearby F8 V star HD 35850 (HR 1817). The EUVE spectra reveal 28 emission lines from Fe IX and Fe XV to Fe XXIV. The Fe XXI 102, 129 A ratio yields an upper limit for the coronal electron density, log n < 11.6 per cc. The EUVE SW spectrum shows a small but clearly detectable continuum. The line-to-continuum ratio indicates approximately solar Fe abundances, 0.8 < Z < 1.6. The resulting emission-measure distribution is characterized by two temperature components at log T of 6.8 and 7.4. The EUVE spectra have been compared with non-simultaneous ASCA SIS spectra of HD 35850. The SIS spectrum shows the same temperature distribution as the EUVE DEM analysis. However, the SIS spectral firs suggest sub-solar abundances, 0.34 < Z < 0.81. Although some of the discrepancy may be the result of incomplete X-ray line lists, we cannot explain the disagreement between the EUVE line-to-continuum ratio and the ASCA-derived Fe abundance. Given its youth (t ~ 100 Myr), its rapid rotation (v sin i ~ 50 km/s), and its high X-ray activity (Lx ~ 1.5E+30 ergs/s), HD 35850 may represent an activity extremum for single, main-sequence F-type stars. The variability and EM distribution can be reconstructed using the continuous flaring model of Guedel provided that the flare distribution has a power-law index of 1.8. Similar results obtained for other young solar analogs suggest that continuous flaring is a viable coronal heating mechanism on rapidly rotating, late-type, main-sequence stars.Comment: 32 pages incl. 14 figures and 3 tables. To appear in the 1999 April 10 issue of The Astrophysical Journa

    The Structure of Stellar Coronae in Active Binary Systems

    Get PDF
    A survey of 28 stars using EUV spectra has been conducted to establish the structure of stellar coronae in active binary systems from the EMD, electron densities, and scale sizes. Observations obtained by the EUVE during 9 years of operation are included for the stars in the sample. EUVE data allow a continuous EMD to be constructed in the range log T~5.6-7.4, using iron emission lines. These data are complemented with IUE observations to model the lower temperature range. Inspection of the EMD shows an outstanding narrow enhancement, or ``bump'' peaking around log T~6.9 in 25 of the stars, defining a fundamental coronal structure. The emission measure per unit stellar area decreases with increasing orbital (or photometric) periods of the target stars; stars in binaries generally have more material at coronal temperatures than slowly rotating single stars. High electron densities (Ne>10^12 cm^-3) are derived at ~10 MK for some targets, implying small emitting volumes. The observations suggest the magnetic stellar coronae of these stars are consistent with two basic classes of magnetic loops: solar-like loops with maximum temperature around log T~6.3 and lower electron densities (Ne>10^9-10.5), and hotter loops peaking around log T~6.9 with higher electron densities (Ne>10^12). For the most active stars, material exists at much higher temperatures (log T>6.9) as well. However, current ab initio stellar loop models cannot reproduce such a configuration. Analysis of the light curves of these systems reveals signatures of rotation of coronal material, as well as apparent seasonal changes in the activity levels.Comment: 45 pages, 9 figures (with 20 eps files). Accepted for its publication in ApJ

    Meeting the Cool Neighbors X: Ultracool dwarfs from the 2MASS All-Sky Data Release

    Full text link
    Using data from the 2MASS All-Sky Point Source Catalogue, we have extended our census of nearby ultracool dwarfs to cover the full celestial sphere above Galactic latitute 15 degrees. Starting with an initial catalogue of 2,139,484 sources, we have winnowed the sample to 467 candidate late-type M or L dwarfs within 20 parsecs of the Sun. Fifty-four of those sources already have spectroscopic observations confirming them as late-type dwarfs. We present optical spectroscopy of 376 of the remaining 413 sources, and identify 44 as ultracool dwarfs with spectroscopic distances less than 20 parsecs. Twenty-five of the 37 sources that lack optical data have near-infrared spectroscopy. Combining the present sample with our previous results and data from the literature, we catalogue 94 L dwarf systems within 20 parsecs. We discuss the distribution of activity, as measured by H-alpha emission, in this volume-limited sample. We have coupled the present ultracool catalogue with data for stars in the northern 8-parsec sample and recent (incomplete) statistics for T dwarfs to provide a snapshot of the current 20-parsec census as a function of spectral type.Comment: Accepted for publication by the Astronomical Journa

    Stellar Lyman-alpha Emission Lines in the Hubble Space Telescope Archive: Intrinsic Line Fluxes and Absorption from the Heliosphere and Astrospheres

    Full text link
    We search the Hubble Space Telescope (HST) archive for previously unanalyzed observations of stellar H I Lyman-alpha emission lines, our primary purpose being to look for new detections of Lyman-alpha absorption from the outer heliosphere, and to also search for analogous absorption from the astrospheres surrounding the observed stars. The astrospheric absorption is of particular interest because it can be used to study solar-like stellar winds that are otherwise undetectable. We find and analyze 33 HST Lyman-alpha spectra in the archive. All the spectra were taken with the E140M grating of the Space Telescope Imaging Spectrograph (STIS) instrument on board HST. The HST/STIS spectra yield 4 new detections of heliospheric absorption (70 Oph, Xi Boo, 61 Vir, and HD 165185) and 7 new detections of astrospheric absorption (EV Lac, 70 Oph, Xi Boo, 61 Vir, Delta Eri, HD 128987, and DK UMa), doubling the previous number of heliospheric and astrospheric detections. When combined with previous results, 10 of 17 lines of sight within 10 pc yield detections of astrospheric absorption. This high detection fraction implies that most of the ISM within 10 pc must be at least partially neutral, since the presence of H I within the ISM surrounding the observed star is necessary for an astrospheric detection. In contrast, the detection percentage is only 9.7% (3 out of 31) for stars beyond 10 pc. Our Lyman-alpha analyses provide measurements of ISM H I and D I column densities for all 33 lines of sight, and we discuss some implications of these results. Finally, we measure chromospheric Lyman-alpha fluxes from the observed stars. We use these fluxes to determine how Lyman-alpha flux correlates with coronal X-ray and chromospheric Mg II emission, and we also study how Lyman-alpha emission depends on stellar rotation.Comment: 56 pages, 15 figures; AASTEX v5.0 plus EPSF extensions in mkfig.sty; accepted by ApJ

    Enhanced lithium depletion in Sun-like stars with orbiting planets

    Full text link
    The surface abundance of lithium on the Sun is 140 times less than protosolar, yet the temperature at the base of the surface convective zone is not hot enough to burn Li. A large range of Li abundances in solar type stars of the same age, mass and metallicity is observed, but theoretically difficult to understand. An earlier suggestion that Li is more depleted in stars with planets was weakened by the lack of a proper comparison sample of stars without detected planets. Here we report Li abundances for an unbiased sample of solar-analogue stars with and without detected planets. We find that the planet-bearing stars have less than 1 per cent of the primordial Li abundance, while about 50 per cent of the solar analogues without detected planets have on average 10 times more Li. The presence of planets may increase the amount of mixing and deepen the convective zone to such an extent that the Li can be burned.Comment: 13 pages, 2 figure
    • 

    corecore