934 research outputs found

    Unpunished Insults -- The Looming Cyber Barbary Wars

    Get PDF

    Unpunished Insults -- The Looming Cyber Barbary Wars

    Get PDF

    Surface melting of the vortex lattice

    Full text link
    We discuss the effect of an (ab)-surface on the melting transition of the pancake-vortex lattice in a layered superconductor within a density functional theory approach. Both discontinuous and continuous surface melting are predicted for this system, although the latter scenario occupies the major part of the low-field phase diagram. The formation of a quasi-liquid layer below the bulk melting temperature inhibits the appearance of a superheated solid phase, yielding an asymmetric hysteretic behavior which has been seen in experiments.Comment: 4 pages, 3 figure

    Density functional theory of vortex lattice melting in layered superconductors: a mean-field--substrate approach

    Full text link
    We study the melting of the pancake vortex lattice in a layered superconductor in the limit of vanishing Josephson coupling. Our approach combines the methodology of a recently proposed mean-field substrate model for such systems with the classical density functional theory of freezing. We derive a free-energy functional in terms of a scalar order-parameter profile and use it to derive a simple formula describing the temperature dependence of the melting field. Our theoretical predictions are in good agreement with simulation data. The theoretical framework proposed is thermodynamically consistent and thus capable of describing the negative magnetization jump obtained in experiments. Such consistency is demonstrated by showing the equivalence of our expression for the density discontinuity at the transition with the corresponding Clausius-Clapeyron relation.Comment: 11 pages, 4 figure

    Surface Melting of the Vortex Lattice in Layered Superconductors: Density Functional Theory

    Full text link
    We study the effects of an abab-surface on the vortex-solid to vortex-liquid transition in layered superconductors in the limit of vanishing inter-layer Josephson coupling. We derive the interaction between pancake vortices in a semi-infinite sample and adapt the density functional theory of freezing to this system. We obtain an effective one-component order-parameter theory which can be used to describe the effects of the surface on vortex-lattice melting. Due to the absence of protecting layers in the neighbourhood of the surface, the vortex lattice formed near the surface is more susceptible to thermal fluctuations. Depending on the value of the magnetic field, we predict either a continuous or a discontinuous surface melting transition. For intermediate values of the magnetic field, the surface melts continuously, assisting the formation of the liquid phase and suppressing hysteresis above the melting transition, a prediction consistent with experimental results. For very low and very high magnetic fields, the surface melts discontinuously. The two different surface melting scenarios are separated by two surface multicritical points, which we locate on the melting line.Comment: 16 pages, 12 figure

    Dissociation of vortex stacks into fractional-flux vortices

    Full text link
    We discuss the zero field superconducting phase transition in a finite system of magnetically coupled superconducting layers. Transverse screening is modified by the presence of other layers resulting in topological excitations with fractional flux. Vortex stacks trapping a full flux and present at any finite temperature undergo an evaporation transition which corresponds to the depairing of fractional-flux vortices in individual layers. We propose an experiment with a bi-layer system allowing us to identify the dissociation of bound vortex molecules.Comment: 4 pages, 1 figure; revised version, to appear in Phys. Rev. Let

    The ISCIP Analyst, Volume II, Issue 5

    Full text link
    This repository item contains a single issue of The ISCIP Analyst, an analytical review journal published from 1996 to 2010 by the Boston University Institute for the Study of Conflict, Ideology, and Policy

    The ISCIP Analyst, Volume II, Issue 14

    Full text link
    This repository item contains a single issue of The ISCIP Analyst, an analytical review journal published from 1996 to 2010 by the Boston University Institute for the Study of Conflict, Ideology, and Policy

    The ISCIP Analyst, Volume II, Issue 15

    Full text link
    This repository item contains a single issue of The ISCIP Analyst, an analytical review journal published from 1996 to 2010 by the Boston University Institute for the Study of Conflict, Ideology, and Policy

    Harmonic Potential Theorem: Extension to Spin-, Velocity-, and Density-Dependent Interactions

    Get PDF
    One of the few exact results for the description of the time evolution of an inhomogeneous, interacting many-particle system is given by the harmonic potential theorem (HPT). The relevance of this theorem is that it sets a tight constraint on time-dependent many-body approximations. In this contribution, we show that the original formulation of the HPT is valid also for the case of spin-, velocity-, and density-dependent interactions. This result is completely general and relevant, among the rest, for nuclear structure theory both in the case of ab initio and of more phenomenological approaches. As an example, we report on a numerical implementation by testing the small-amplitude limit of the time-dependent Hartree-Fock-also known as the random phase approximation-for the translational frequencies of a neutron system trapped in a harmonic potential
    • …
    corecore