840 research outputs found

    Fermi liquid theory of ultra-cold trapped Fermi gases: Implications for Pseudogap Physics and Other Strongly Correlated Phases

    Full text link
    We show how Fermi liquid theory can be applied to ultra-cold Fermi gases, thereby expanding their "simulation" capabilities to a class of problems of interest to multiple physics sub-disciplines. We introduce procedures for measuring and calculating position dependent Landau parameters. This lays the ground work for addressing important controversial issues: (i) the suggestion that thermodynamically, the normal state of a unitary gas is indistinguishable from a Fermi liquid (ii) that a fermionic system with strong repulsive contact interactions is associated with either ferromagnetism or localization; this relates as well to 3^3He and its p-wave superfluidity.Comment: 4 pages, 2 figures, revised versio

    Spin waves in quasi-equilibrium spin systems

    Full text link
    Using the Landau Fermi liquid theory we have discovered a new regime for the propagation of spin waves in a quasi-equilibrium spin systems. We have determined the dispersion relation for the transverse spin waves and found that one of the modes is gapless. The gapless mode corresponds to the precessional mode of the magnetization in a paramagnetic system in the absence of an external magnetic field. One of the other modes is gapped which is associated with the precession of the spin current around the internal field. The gapless mode has a quadratic dispersion leading to some interesting thermodynamic properties including a T3/2T^{3/2} contribution to the specific heat. We also show that these modes make significant contributions to the dynamic structure function.Comment: 4 pages, 3 figure

    Lognormal scale invariant random measures

    Full text link
    In this article, we consider the continuous analog of the celebrated Mandelbrot star equation with lognormal weights. Mandelbrot introduced this equation to characterize the law of multiplicative cascades. We show existence and uniqueness of measures satisfying the aforementioned continuous equation; these measures fall under the scope of the Gaussian multiplicative chaos theory developed by J.P. Kahane in 1985 (or possibly extensions of this theory). As a by product, we also obtain an explicit characterization of the covariance structure of these measures. We also prove that qualitative properties such as long-range independence or isotropy can be read off the equation.Comment: 31 pages; Probability Theory and Related Fields (2012) electronic versio

    Multi-parameter generalization of nonextensive statistical mechanics

    Full text link
    We show that the stochastic interpretation of Tsallis' thermostatistics given recently by Beck [Phys. Rev. Lett {\bf 87}, 180601 (2001)] leads naturally to a multi-parameter generalization. The resulting class of distributions is able to fit experimental results which cannot be reproduced within the Boltzmann's or Tsallis' formalism.Comment: ReVTex 4.0, 4 eps figure

    The random case of Conley's theorem

    Full text link
    The well-known Conley's theorem states that the complement of chain recurrent set equals the union of all connecting orbits of the flow ϕ\phi on the compact metric space XX, i.e. XCR(ϕ)=[B(A)A]X-\mathcal{CR}(\phi)=\bigcup [B(A)-A], where CR(ϕ)\mathcal{CR}(\phi) denotes the chain recurrent set of ϕ\phi, AA stands for an attractor and B(A)B(A) is the basin determined by AA. In this paper we show that by appropriately selecting the definition of random attractor, in fact we define a random local attractor to be the ω\omega-limit set of some random pre-attractor surrounding it, and by considering appropriate measurability, in fact we also consider the universal σ\sigma-algebra Fu\mathcal F^u-measurability besides F\mathcal F-measurability, we are able to obtain the random case of Conley's theorem.Comment: 15 page

    Plume motion and large-scale circulation in a cylindrical Rayleigh-B\'enard cell

    Full text link
    We used the time correlation of shadowgraph images to determine the angle Θ\Theta of the horizontal component of the plume velocity above (below) the center of the bottom (top) plate of a cylindrical Rayleigh-B\'enard cell of aspect ratio ΓD/L=1\Gamma \equiv D/L = 1 (DD is the diameter and L87L \simeq 87 mm the height) in the Rayleigh-number range 7×107R3×1097\times 10^7 \leq R \leq 3\times 10^{9} for a Prandtl number σ=6\sigma = 6. We expect that Θ\Theta gives the direction of the large-scale circulation. It oscillates time-periodically. Near the top and bottom plates Θ(t)\Theta(t) has the same frequency but is anti-correlated.Comment: 4 pages, 6 figure

    Universality in fully developed turbulence

    Get PDF
    We extend the numerical simulations of She et al. [Phys.\ Rev.\ Lett.\ 70, 3251 (1993)] of highly turbulent flow with 1515 \le Taylor-Reynolds number Reλ200Re_\lambda\le 200 up to Reλ45000Re_\lambda \approx 45000, employing a reduced wave vector set method (introduced earlier) to approximately solve the Navier-Stokes equation. First, also for these extremely high Reynolds numbers ReλRe_\lambda, the energy spectra as well as the higher moments -- when scaled by the spectral intensity at the wave number kpk_p of peak dissipation -- can be described by {\it one universal} function of k/kpk/k_p for all ReλRe_\lambda. Second, the ISR scaling exponents ζm\zeta_m of this universal function are in agreement with the 1941 Kolmogorov theory (the better, the large ReλRe_\lambda is), as is the ReλRe_\lambda dependence of kpk_p. Only around kpk_p viscous damping leads to slight energy pileup in the spectra, as in the experimental data (bottleneck phenomenon).Comment: 14 pages, Latex, 5 figures (on request), 3 tables, submitted to Phys. Rev.

    Electrical conductivity in granular media and Branly's coherer: A simple experiment

    Get PDF
    accepted for publication in American Journal of Physics (to be published between February 2005 and June 2005)We show how a simple laboratory experiment can illustrate certain electrical transport properties of metallic granular media. At a low critical imposed voltage, a transition from an insulating to a conductive state is observed. This transition comes from an electro-thermal coupling in the vicinity of the microcontacts between grains where microwelding occurs. Our apparatus allows us to obtain an implicit determination of the microcontact temperature, which is analogous to the use of a resistive thermometer. The experiment also illustrates an old problem, the explanation of Branly's coherer effect - a radio wave detector used for the first wireless radio transmission, and based on the sensitivity of the metal fillings conductivity to an electromagnetic wave

    Smooth stable and unstable manifolds for stochastic partial differential equations

    Full text link
    Invariant manifolds are fundamental tools for describing and understanding nonlinear dynamics. In this paper, we present a theory of stable and unstable manifolds for infinite dimensional random dynamical systems generated by a class of stochastic partial differential equations. We first show the existence of Lipschitz continuous stable and unstable manifolds by the Lyapunov-Perron's method. Then, we prove the smoothness of these invariant manifolds
    corecore