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Abstract. We establish a consistency result by comparing two independent notions

of generalised solutions to a large class of linear hyperbolic first order PDE systems
with constant coefficients, showing that they eventually coincide. The first is the usual

notion of weak solutions defined via duality. The second is the new notion of D-solutions

introduced in the recent paper [29], which arose in connection to vectorial Calculus of
Variations in L∞ and fully nonlinear elliptic systems. This new approach is a duality-free

alternative to distributions and is based on the probabilistic representation of limits of

difference quotients.

Keywords: Linear hyperbolic first order PDE systems, generalised solutions, fully non-

linear systems, distributional solutions, Young measures.

1. Introduction

Let n,N ∈ N, T > 0 and consider the following archetypal system of first order

evolutionary PDE with constant coefficients:

Dtu + A:Du = f, in (0, T )× Rn, (1.1)

where u, f : (0, T ) × Rn −→ RN . Here A : RN×n −→ RN is the linear mapping

given in index form for any Q ∈ RN×n by

A:Q =

N∑
α,β=1

n∑
j=1

(
Aαβj Qβj

)
eα. (1.2)

In (1.1)-(1.2), we use the symbolisation Du(t, x) for the N × n spatial gradient

matrix (Diuα(t, x))α=1...N
i=1...n with respect to x ∈ Rn (where Di ≡ ∂/∂xi) , Dt denotes

the temporal derivative with respect to t ∈ (0, T ), {e1, ..., eN} is the standard basis

∗The author has been financially supported through the EPSRC grant EP/N017412/1.
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of RN and we will assume that the putative solution u = (u1, ..., uN )> and the right

hand side f = (f1, ..., fN )> lie in L2
(
(0, T )× Rn,RN

)
. In indices, (1.1) reads

Dtuα +

N∑
β=1

n∑
i=1

Aαβi Diuβ = fα, α = 1, ..., N.

The purpose of this paper is to establish a consistency-compatibility result by com-

paring two fundamentally different notions of generalised solutions to a large class

of systems as in (1.1). By assuming a certain hyperbolicity condition, we prove

that both notions eventually agree for (1.1). The first one in the usual notion of

weak/distributional solutions defined through duality, that is by requiring∫
(0,T )×Rn

{
uDtφ + A : u⊗Dφ + f φ

}
= 0,

for all φ ∈ C∞c
(
(0, T )×Rn

)
. The second notion of solution has very recently been

proposed by the author in [29] and emerged in relation to the study of the (fully)

nonlinear systems arising in vectorial Calculus of Variations in L∞, as well as in

the overlapping area of nonlinear degenerate elliptic systems (see [29]-[32]). For the

sake of completeness of the exposition, at the end of the introduction we discuss

briefly the main objects associated with these modern areas.

Our new concept is a duality-free notion of generalised solution which applies to

general fully nonlinear PDE systems of any order. The a priori regularity required

for this sort of solutions is just measurability and the nonlinearities are also allows

to be discontinuous. Since we do not need to assume that putative solutions must

be locally integrable, the derivatives a priori may not exist not even in the sense of

distributions.

The starting point of our notion in not based either on duality or on integration-

by-parts. Instead, it relies on the probabilistic representation of the limits of dif-

ference quotients by using Young measures, an indispensable tool in Calculus of

Variations, PDE theory and general topology (see e.g. [16,21,11,20,40]). However,

the typical use of Young measures so far has been as a convergence tool, quantifying

the failure of weak convergence due to oscillations and/or concentrations. In par-

ticular, our idea is radically different from the concept of measure-valued solutions

[14] and of their descendants and siblings.

Let us motivate the idea of this new solution concept for the particular case

of (1.1). To this end, it will be convenient to rewrite (1.1) in a slightly different

fashion. Let Du = [Dtu |Du] : (0, T )×Rn −→ RN×(1+n) be the space-time gradient

of a putative solution u and for convenience we set x = (x0, x) ≡ (t, x) ∈ R1+n. We

may reformulate (1.1) as

A : Du = f, in (0, T )× Rn, (1.3)

where A : RN×(1+n) −→ RN is the augmentation of the linear map A, given by

Aαβi :=

{
δαβ , α, β = 1, ..., N ; i = 0,

Aαβi, α, β = 1, ..., N ; i = 1, ..., n.
(1.4)
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The augmentation of A sends X = [X0|X] ∈ RN×(1+n) to the vector X0 + A:X of

RN . Since the particular structure of (1.3) does not play any role in the foregoing

reasoning, it is perhaps less distracting to think in the generality of the system

F
(
x, u(x),Du(x)

)
= 0, x ∈ (0, T )× Rn, (1.5)

where the coefficients are given by any Carathéodory mapping

F :
(
(0, T )× Rn

)
×
(
RN × RN×(1+n)

)
−→ RN . (1.6)

Then (1.3) corresponds to the particular linear choice F(x, η,X) = A : X − f(x).

Suppose that u is a strong solution, in the sense that u is in W 1,1
loc ((0, T )×Rn,RN )

and satisfies (1.5) a.e. on (0, T )×Rn. Let {D1,h}h6=0 denote the difference quotient

operators. By the equivalence between weak and strong derivatives, we have

F
(
x, u(x), lim

ν→∞
D1,hνu(x)

)
= 0, a.e. x ∈ (0, T )× Rn,

along infinitesimal sequences (hν)∞ν=1 ⊆ R\{0}. Since F is assumed to be continuous

with respect to the gradient variable, this is equivalent to

lim
ν→∞

F
(
x, u(x),D1,hνu(x)

)
= 0, a.e. x ∈ (0, T )× Rn.

Note that the above statement makes sense if u is merely measurable, whereas the

latter limit may exist even if the former does not. In order to represent it, we view

the difference quotients D1,hu as a family of measure-valued maps

δD1,hu : (0, T )× Rn −→P
(
RN×(1+n)

)
valued in the space of probability measures over a compactification RN×(1+n) of the

matrix space RN×(1+n). The exact manner we compactify plays no essential role

for the notion of solution, but addition of “infinity” is necessary due to the lack of

any bounds for the difference quotients which may not converge in any sense. This

makes the theory genuinely nonlinear, even for linear PDE. The aforementioned

space is the set of Young measures (for more details see Subsection 2.2 that follows).

Since this set of Young measures is sequentially compact when equipped with the

appropriate weak* topology, for any infinitesimal sequence hν → 0, there exists a

probability-valued map Du : (0, T )× Rn −→P
(
RN×(1+n)

)
such that

δD1,hνu
∗−−⇀ Du in Y

(
(0, T )× Rn, RN×(1+n)

)
, as ν →∞, (1.7)

along perhaps a subsequence (νk)∞1 . Therefore, we arrive at the following definition

(for more details see Section 2):

Definition 1.1 (Diffuse derivatives and D-solutions to first order systems,

cf. [29]). Let F be a Carathéodory mapping as in (1.6) and

E :=
{
Eαi

∣∣ α = 1, ..., N ; i = 0, 1, ..., n
}

a basis of RN×(1+n) consisting of rank-one matrices.
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(1) The set of diffuse derivatives of a measurable map u : (0, T ) × Rn −→ RN
consists of those probability-valued maps, denoted by Du, which arise as subsequen-

tial weak* limits of its difference quotients {D1,hu}h6=0 as in (1.7), where D1,h is

taken with respect to the frame E (Subsection 2.3).

(2) A measurable map u : (0, T )× Rn −→ RN is a D-solution to the system (1.5)

on (0, T )× Rn, if for any compactly supported Φ ∈ Cc
(
RN×(1+n)

)
, we have∫

RN×n
Φ(X)F

(
x, u(x), X

)
d[Du(x)](X) = 0, a.e. x ∈ (0, T )× Rn, (1.8)

for all diffuse derivatives.

In general diffuse gradients may not be unique for nonsmooth maps, but they

are compatible with weak derivatives, whilst D-solutions are readily compatible with

strong-classical solutions. For, if u is differentiable weakly (or just in measure in the

sense of Ambrosio-Malý [2,29]), then Du is unique and Du = δDu a.e. on (0, T )×Rn,

thus recovering strong solutions directly from (1.8). Diffuse derivatives can be seen

as measure-theoretic disintegrations whose barycentres are the distributional deriva-

tives (see [29]). For further results relevant to D-solutions and their applications,

see [30]-[32], [34,10,35,13], [36]-[38].

The main result herein is that weak solutions coincide with D-solutions for

(1.3) in the appropriate respective spaces, if A (given by (1.4)) satisfies the next

hyperbolicity hypothesis:{
The orthogonal complement Π := N(A)⊥ ⊆ RN×(1+n)

of the nullspace of A is spanned by rank-one matrices.
(1.9)

Evidently, the nullspace is given by N(A) = {X ∈ RN×(1+n) |A : X = 0}. Deferring

until Subsection 2.5 the exact meaning of (1.9), we may now state our main result.

Theorem 1.2 (Equivalence of notions & partial regularity).

Consider the system (1.3) and suppose A satisfies (1.9) and f ∈ L2
(
(0, T ) ×

Rn,RN
)
. Then, a measurable map u : (0, T )×Rn −→ RN is a weak solution in the

space L2
(
(0, T ) × Rn,RN

)
if and only if it is a D-solution (Definition 1.1) in the

fibre space W 1,2
(
(0, T )× Rn,RN

)
(see Subsection 2.4).

Moreover, any (D- or weak) solution satisfies the property that the orthogonal

projection of Du on the subspace Π ⊆ RN×(1+n) exists in L2 and for any η⊗ a ∈ Π

we have Da(η · u) ∈ L2((0, T )× Rn).

From the viewpoint of applications, the significance of our “linear consistency”

result for the model system (1.1) lies in that it possibly opens up a new avenue of

exploration beyond degenerate elliptic systems, allowing to access the fully nonlinear

vectorial hyperbolic realm of systems of Hamilton-Jacobi equations –as those arising

from non-zero sum differential games [18]– which can not be studied with either

duality or viscosity solution methods, but for which the framework of D-solutions is

applicable.
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From the intrinsic viewpoint of the theory, we provide further insights on the

structure of the generalised objects complementing the observations in [29], which

suggest (additionally to the results obtained in the previously cited papers) that D-

solutions constitute an adaptable and proper duality-free theory for fully nonlinear

vectorial problems.

As mentioned earlier, the approach of D-solutions emerged in the study of (fully)

nonlinear degenerate elliptic systems and of higher order equations, particularly

those arising in Calculus of Variations in L∞. The latter area is concerned with the

study of variational problems for functionals of the form

E∞(u,O) :=
∥∥H(·, u,Du)

∥∥
L∞(O)

, u ∈W 1,∞
loc (Rn,RN ), O b Rn,

as well as of the associated “Euler-Lagrange” equations which describe their ex-

trema. The scalar case N = 1 was pioneered in the 1960s by Aronsson ([3]-[9]).

Nowadays, the scalar case is very well developed and the relevant single equations

are studied in the context of viscosity solutions (for a pedagogical introduction see

[28,12]). The vectorial case N ≥ 2 started much later in the early 2010s ([22]-[27]).

In the simplest possible case of the functional u 7→ ‖Du‖L∞(·), the associated PDE

system governing its extrema is the so-called ∞-Laplacian:

∆∞u :=
(

Du⊗Du+ |Du|2[[Du]]⊥⊗ I
)

: D2u = 0,

where [[Du]]⊥ := Proj(R(Du))⊥ . The higher order case began even more recently

([37,38,34,35]). In the exemplary case of u 7→ ‖D2u‖L∞(·), the associated PDE is

the so-called ∞-Polylaplacian and is fully nonlinear and of third order:

∆2
∞u := (D2u)⊗3 : (D3u)⊗2 = 0.

In the papers cited above, several results regarding D-solutions to the above equa-

tions, their generalisations and other associated problems have been established.

2. Preliminaries, Young measures, Fibre spaces and hyperbolicity

2.1. Basics

We begin with some basics which will be used throughout the rest of the paper.

Firstly, for the sake of brevity, we will henceforth use the abbreviations

RnT := (0, T )× Rn , n1 := 1 + n.

Our general measure theoretic and function space notation is either standard, e.g.

as in [17,19] or else self-explanatory. The norms | · | appearing will always be the

Euclidean ones, whilst the Euclidean inner products will be denoted by either “·”
on Rn1 ,RN or by “:” on matrix spaces, e.g. on RN×n1 we have

|X| =
(
X : X

)1/2
, X : Y =

N∑
α=1

n∑
i=0

Xαi Y αi, X, Y ∈ RN×n1 ,
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etc. The symbol “:” will also denote higher order contractions as e.g. in (1.1), (1.2)

and the exact meaning will be clear form the context. The standard bases on Rn1 ,

RN , RN×n1 will be denoted by {ei| i}, {eα|α} and {eα⊗ ei|α, i} respectively. If the

range of the indices is omitted (as we just did) and unless indicated otherwise, Greek

indices will run in {1, ..., N} and Latin indices in {0, 1, ..., n}. We will denote vector

subspaces of RN×n1 as well as the orthogonal projections on them by the same

symbol. For example, the projection ProjΠ : RN×n1 −→ RN×n1 will be denoted

by merely Π. We will also employ a compactification of the vector space RN×n1 .

The exact way we compactify is irrelevant from the PDE viewpoint, as long as the

embedding space is compact and metrisable. For concreteness, we will utilise the

Alexandroff 1-point compactification of RN×n1 which will be denoted by RN×n1 =

RN×n1 ∪{∞}. Its metric distance will be the usual one which makes it isometric to

the sphere of the same dimension (via the stereographic projection which identifies

{∞} with the north pole of the sphere). Then, RN×n1 becomes a metric vector

space isometrically and densely contained in its compactification. We note that

balls, norms and distances taken in RN×n1 will be the Euclidean ones.

2.2. Young Measures.

We collect for the convenience of the reader some basic facts about Young mea-

sures taken from [29]. Consider the L1 space of (strongly) measurable maps

valued in the space of continuous functions over RN×n1 , which we symbolise

as L1
(
RnT , C

(
RN×n1

))
. For background material on this space we refer e.g. to

[21,20,15,40]. The elements of this space are those Carathéodory functions Φ :

RnT × RN×n1 −→ R (i.e. functions measurable in x for all X and continuous in

X for a.e. x) which satisfy

‖Φ‖L1(RnT ,C(RN×n1 )) :=

∫
RnT

(
max

X∈RN×n1

∣∣Φ(x,X)
∣∣)dx < ∞.

Its dual space is denoted by L∞w∗
(
RnT ,M

(
RN×n1

))
, where “M” stands for the space

of Radon measures equipped with the total variation norm. The dual space consists

of measure-valued maps RnT 3 x 7→ ϑ(x) ∈ M
(
RN×n1

)
which are weakly* measur-

able, that is, for any fixed Borel set U ⊆ RN×n1 , the function [ϑ(·)](U) : RnT −→ R
is Lebesgue measurable. The duality pairing is given by

〈·, ·〉 : L∞w∗
(
RnT ,M

(
RN×n1

))
× L1

(
RnT , C

(
RN×n1

))
−→ R,

〈ϑ,Φ〉 :=

∫
RnT

∫
RN×n1

Φ(x,X) d[ϑ(x)](X) dx.
(2.1)

Definition (Young measures). The space of Young measures is the set of all weakly*

measurable probability-valued maps RnT −→P
(
RN×n1

)
. Hence, it can be identified

with a subset of the unit sphere of L∞w∗
(
RnT ,M

(
RN×n1

))
:

Y
(
RnT ,RN×n1

)
:=
{
ϑ ∈ L∞w∗

(
RnT ,M

(
RN×n1

))
: ϑ(x) ∈P

(
RN×n1

)
, a.e. x ∈ RnT

}
.
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We will equip Y
(
RnT ,RN×n1

)
with the induced weak* topology (which is metrisable

and bounded sets are sequentially precompact). The next known facts about Young

measures will be used systematically (for the proofs see e.g. [20] and [29]):

(i) Y
(
RnT ,RN×n1

)
is a convex and sequentially weakly* compact set.

(ii) All measurable mappings U : RnT −→ RN×n1 can be identified with Young

measures and one such imbedding is given by the Dirac mass: U 7→ δU .

(iii) Let Uν , U∞ : RnT −→ RN×n1 be measurable maps, ν ∈ N. Then, up to the

passage to subsequences, we have Uν −→ U∞ a.e. on RnT if and only if δUν
∗−−⇀δU∞

in Y
(
RnT ,RN×n1

)
, as ν →∞.

2.3. Derivatives and difference quotients with respect to general

matrix bases.

Let u : RnT −→ RN be any measurable map which we understand to be extended

by zero on R1+n \ RnT . For any a ∈ Rn1 \ {0} and any h ∈ R \ {0}, the difference

quotients of u along the direction a are symbolised as

D1,h
a u(x) :=

u(x+ ha)− u(x)

h
, x ∈ RnT .

Let E =
{
Eαi|α; i

}
be a basis of RN×n1 consisting of rank-one matrices of the form

Eαi = Eα ⊗ E(α)i. We will need to write the gradient and the difference quotients

of u with respect to such a basis. To this end, we will use the next elementary fact

of matrix algebra.

Lemma 2.1 (Non-orthogonal expansions). Let
{
Eαi|α; i

}
and

{
Fαi|α; i

}
be

two bases and 〈., .〉 an inner product on the space RN×n1 . Then, there exists a unique

fourth order tensor {Cαiβj |α, i, β, j} such that

X =
∑
α,i

∑
β,j

Cαiβj〈F βj , X〉Eαi , X ∈ RN×n1 .

Proof of Lemma 2.1. We begin by noting that there exists a unique set of linear

functionals {Lαi|α; i} ⊆ (RN×n1)∗ such that X =
∑
α,i Lαi(X)Eαi, for any X ∈

RN×n1 . To write these functionals explicitly, apply to this expansion of X the

orthogonal projection (with respect to any inner product, e.g. the Euclidean)

Παi := Proj(
span[

{
Eβj : (β,j)6=(α,i)

}
]
)⊥ ,

to infer that Lαi = (Παi(E
αi))−1Παi. Consider now the basis of 1-forms {F ∗αi|α; i}

in the dual space (RN×n1)∗, where F ∗αi := 〈Fαi, ·〉. Similarly, there exist unique

linear functionals {L∗βj |β; j} ⊆ (RN×n1)∗∗ for which we have the expansion L =∑
β,j L

∗
βj(L)F ∗βj , for any L ∈ (RN×n1)∗. We may also represent L∗βj via respective

dual projections as L∗βj = (Π∗βj(F
∗
βj))

−1Π∗βj . We finally set Cαiβj := L∗βj(Lαi). 2
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Using Lemma 2.1 with both bases equal to E and for the Euclidean inner product,

we have the following expansion, in terms of directional derivatives:

Du =
∑
α,i

∑
β,j

Cαiβj
(
Eβj : Du

)
Eαi =

∑
α,i

∑
β,j

Cαiβj

(
DE(β)j (Eβ · u)

)
Eαi.

Given h ∈ R \ {0}, we define the difference quotients of u (with respect to E) as

D1,hu : RnT −→ RN×n1 , D1,hu :=
∑
α,i

∑
β,j

Cαiβj

[
D1,h

E(β)j (E
β · u)

]
Eαi.

Clearly, if Du exists weakly in Lp for some p ∈ [1,∞), then D1,hu −→ Du (strongly)

in Lp as h→ 0.

2.4. The fibre Sobolev space.

The generalised solution concept of Definition 1.1 is very weak and has to be coupled

with an extra admissibility condition, which, following the “elliptic lines” of [29],

we formulate as membership in a certain functional space of partially regular maps,

adapted to the PDE. For A as in (1.4), let Π be as in (1.9). The fibre space consists

of maps differentiable only along certain rank-one directions of non-degeneracy.

We begin by identifying the Sobolev space W 1,2
(
RnT ,RN

)
with its isometric image

W̃ 1,2
(
RnT ,RN

)
into a product of L2 spaces, via the mapping u 7→ (u,Du):

W̃ 1,2
(
RnT ,RN

)
⊂
→
L2
(
RnT , RN× RN×n1

)
.

We define the fibre space W 1,2
(
RnT ,RN

)
(associated with A) as the Hilbert space

W 1,2
(
RnT ,RN

)
:= ProjL2(RnT ,RN×Π) W̃

1,2
(
RnT ,RN

) L2

(2.2)

with the natural induced norm (written for W 1,2 maps)

‖u‖W 1,2(RnT ) :=
(
‖u‖2L2(RnT ) + ‖Π Du‖2L2(RnT )

)1/2

.

We recall that Π denotes both the vector space as well as the orthogonal projection

on it. By employing the Mazur theorem, (2.2) can be characterised as:

W 1,2
(
RnT ,RN

)
=

{(
u,G(u)

)
∈ L2

(
RnT , RN×Π

) ∣∣ ∃ (uν)∞1 ⊆W 1,2
(
RnT ,RN

)
:

(uν ,Π Duν) −−⇀
(
u,G(u)

)
in L2

(
RnT , RN×Π

)
, as ν →∞

}
.

We will call G(u) ∈ L2
(
RnT ,Π

)
the fibre (space-time) gradient of u. By us-

ing integration by parts and the hypothesis (1.9), it can be easily seen that the

measurable map G(u) depends only on u ∈ L2
(
RnT ,RN

)
and not on the approxi-

mating sequence (for the proof see [29]). Further, G(u) satisfies the “fibre derivative

property”, which is

η ⊗ a ∈ Π ⊆ RN×n1 =⇒ G(u) : (η ⊗ a) = Da(η · u), a.e. on RnT .

In general, the fibre spaces are strictly larger than their “non-degenerate” counter-

parts and contain elements which are not even once weakly differentiable.
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2.5. On our hyperbolicity hypothesis and comparison with relevant

notions

We how discuss briefly the precise meaning of our rank-one spanning assumption

(1.9) and the relation to more conventional hyperbolicity notions. First note that, by

standard linear algebra, Π = N(A)⊥ coincides with the range R(A∗) of the adjoint

operator, given by

A∗ : RN −→ RN×n1 , η 7→ η>A =
∑
β,α,i

(
ηβ Aβαi

)
eβ ⊗ ei.

Hence, given any ξ ⊗ a ∈ RN×n1 \ {0}, we have

ξ ⊗ a ∈ Π = R(A∗) ⇐⇒ ∃ η ∈ RN : η>A = ξ ⊗ a.

which by (1.4), gives that ξ ⊗ a ∈ Π \ {0} if and only if there exists η ∈ RN such

that ηα = a0 ξα and
∑
β ηβAβαi = ai ξα, for all α and all i ≥ 1, whilst a0 6= 0.

Conclusively, we infer that

ξ ⊗ a ∈ Π \ {0} ⇐⇒ a0 6= 0 ,
∑
β

ξβAβαi =
( ai
a0

)
ξα, ∀α, ∀ i ≥ 1. (2.3)

Recall now that (1.9) requires the existence of d linearly independent rank-one

matrices {ξ1 ⊗ a1, ..., ξd ⊗ ad} with d ≤ N spanning the subspace Π. Consequently,

in view of (2.3), the assumption (1.9) is equivalent to the next condition:
The (possibly non-symmetric) (N×N)-matrices Ai :=

∑
α,β Aαβi e

α ⊗ eβ

have a common set of d-many (possibly non-orthogonal) left eigenvectors

{ξ1, ..., ξd} spanning a subspace of RN , with respective eigenvalues σ(Ai)

= {a1
i /a

1
0, ..., a

d
i /a

d
0} the components of the vectors {a1, ..., ad} ⊆ Rn1 .

(2.4)

In the light of the above, our assumption (1.9) is not comparable to the standard

hyperbolicity requirement of N -many real distinct eigenvalues for the matrices Ai.

In a sense, though, (1.9) can be seen as a “weak hyperbolicity” since it implies the

existence of plane wave solutions only along certain directions of RN . If however

N = d, then (1.9) is stronger.

Remark 2.2. If the hypothesis (1.9) is satisfied, then the vectors {ξ1, ..., ξd} are

linearly independent, spanning a d-dimensional subspace of RN . To see this, suppose

for the sake of contradiction that ξd =
∑s
p=1 λp ξ

p for some non-zero {λ1, ..., λs}
and linearly independent {ξ1, ..., ξs}, s ≤ d− 1, then by (2.3) it follows that(
adi
ad0

) s∑
p=1

λp ξ
p = (ξd)>Ai =

(
s∑
p=1

λp ξ
p

)
>

Ai =

s∑
p=1

λp
(
(ξp)>Ai

)
=

s∑
p=1

λp

(
api
ap0

)
ξp

which implies that
s∑
p=1

λp

(
adi
ad0
− api
ap0

)
ξp = 0
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and therefore it follows that api /a
p
0 = adi /a

d
0, showing the vectors {a1, a2, ..., as} are

co-linear, which contradicts the linear independence of the basis of Π.

A sufficient condition for (1.9) (or equivalently (2.4)) to hold is when the com-

mutator of the matrices A1, ...,An vanishes:

[Ai,Aj ] := AiAj −AjAi = 0, i, j ≥ 1. (2.5)

This implies that each Ai symmetric and RN has an orthonormal basis of eigenvec-

tors; (2.5) is always satisfied when min{n,N} = 1 and the fact that (2.5) implies

(1.9) is the content of the linear-algebraic Lemma 3.4 at the end of the paper. How-

ever, (2.5) in a sense trivialises (1.3) since orthogonality of the basis of eigenvectors

implies that the system decouples to N independent single equations. However, the

next example shows that even if d = N , (1.9) is a strictly weaker notion and does

not force decoupling to independent single equations:

Example 2.3. Let n = N = 2 and set A2 = 2A1 = 2A, where

A :=

[
2 2

1 3

]
and ξ1 :=

[
1

2

]
, ξ2 :=

[
1

−1

]
, a1 :=

1

4

8

 , a2 :=

1

1

2

 .
Consider (1.1) with A : R2×2 −→ R2 having as components the matrices {A1,A2}.
Then, by invoking (2.3), one easily confirms that the orthogonal complement of the

nullspace of the augmentation A : R2×3 −→ R2 is spanned by the rank-one matrices

{ξ1 ⊗ a1, ξ2 ⊗ a2}. However, (1.1) can not be decoupled, since it takes the form{
Dtu1 + 2D1u1 + 2D2u1 + D1u2 + 3D2u2 = f1, in R2

T ,

Dtu2 + 4D1u1 + 4D2u1 + 2D1u2 + 6D2u2 = f2, in R2
T .

3. Equivalence between weak and D-solutions

In this section we establish our main result.

Proof of Theorem 1.2. The proof consists of two lemmas. The idea of the proof is

as follows: Firstly, by approximation and some partial regularity estimates, we show

that a map u ∈ L2(RnT ,RN ) is a weak solution to (1.1) if and only if the projection

of the distributional gradient Du on Π ⊆ RN×n1 is given by the fibre gradient G(u)

(Lemma 3.1). Secondly, we use the machinery of D-solutions to characterise this

partially regular map as a D-solution to (1.1) (Lemma 3.2, Remark 3.3).

We begin with an algebraic observation. Let A be as in (1.2) and its augmenta-

tion A as in (1.4). Then, if Π ⊆ RN×n1 is as in (1.9), we have

A:(ΠX) = A:X , ∃ c > 0 : |A:X| ≥ c |ΠX|, (3.1)

for all X ∈ RN×n1 .

Lemma 3.1. A map u : RnT −→ RN in the fibre space (2.2) satisfies

A : G(u) = f, a.e. on RnT , (3.2)
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if and only if it is a weak solution to (1.3) in L2
(
RnT ,RN

)
.

Proof of Lemma 3.1. Suppose first that u is a weak solution to (1.3). By mollifying

(in space-time) by convolution in the standard way (as e.g. in [17]), for any ε > 0

there exist uε, fε ∈ C∞
(
(ε, T − ε)×Rn,RN

)
such that uε −→ u and fε −→ f in

L2
(
(δ, T − δ)× Rn,RN

)
as ε→ 0 for any δ ≥ ε > 0. Hence, in view of (3.1),

A:
(
Π Duε

)
= fε, on (δ, T − δ)× Rn. (3.3)

Again by (3.1), (3.3) gives the estimate∥∥Π Duε
∥∥
L2((δ,T−δ)×Rn)

≤ C‖f‖L2((δ,T−δ)×Rn),

which is uniform in ε, δ > 0. By the definition of the fibre space (2.2) and the

above estimate together with the fact that uε −→ u as ε → 0 in L2, we obtain

that u ∈ W 1,2
(
RnT ,RN

)
and in addition Π Duε −→ G(u) in L2. Thus, by passing

to the limit in (3.3) as ε→ 0 and as δ → 0, we obtain that (3.2) holds, as desired.

Conversely, suppose that (3.2) holds. Then, by (2.2) there exists an approximating

sequence uν −→ u with Π Duν −→ G(u), both in L2 as ν →∞. Hence, we have

A:
(
Π Duν

)
− f = A:

(
Π Duν −G(u)

)
= o(1),

as ν →∞, in L2. By the above and (3.1), for any φ ∈ C1
c

(
RnT
)

we have∫
RnT

{
A:
(
uν ⊗Dφ

)
+ fφ

}
=

∫
RnT

{
−A:

(
Π Duν

)
+ f

}
φ = o(1),

as ν →∞. By passing to the limit, we deduce that u is a weak solution of (1.3), as

claimed. The lemma ensues. 2

The next result completes the proof of Theorem 1.2.

Lemma 3.2. A map u : RnT −→ RN in the fibre space (2.2) satisfies (3.2) if and

only if it is a D-solution to (1.3) (Definition 1.1) with respect to some matrix basis

E depending only on A.

Proof of Lemma 3.2. We begin by supposing that (3.2) holds true. By the prop-

erties of the fibre space (2.2), for any matrix ξ ⊗ a ∈ Π ⊆ RN×n1 we have

D1,h
a (ξ · u) −→ (ξ ⊗ a) : G(u), in L2

(
RnT
)

as h→ 0.

Now we invoke our hypothesis (1.9) and Subsection 2.3 to construct a basis E of

RN×n1 consisting of rank-one matrices and we will express the respective difference

quotients of u with respect to E . By (1.9), we have

Π = span[
{
E1⊗ E1, ..., Ed⊗ Ed

}
] ⊆ RN×n1

for some d ≤ N . By Remark 2.2, it follows that {E1, ..., Ed} are linearly independent

in RN . We define a basis on RN×n1 as in Definition 1.1 in the following way:
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Step 1. We complete the orthogonal complement of {E1, ..., Ed} with an orthonor-

mal basis of N − d vectors {Ed+1, ..., EN} to create a basis of RN .

Step 2. For each of the Eα’s, we complete its orthogonal hyperplane in Rn1 by an

orthogonal basis {E(α)1, ..., E(α)n} and set E(α)0 := Eα.

Step 3. We set

Eαi :=

{
Eα ⊗ E(α)i, if α = 1, ..., d; i = 0, 1, ..., n,

Eα ⊗ ei, if α = d+ 1, ..., N ; i = 0, 1, ..., n.

Then, by defining the difference quotients D1,hu : RnT −→ RN×n1 as in Subsection

2.3 for the above basis, by Lemma 2.1 we have

Π D1,hu −→ G(u), in L2
(
RnT ,Π

)
as h→ 0. (3.4)

By (3.4) and (3.1) we obtain that

A : D1,hu −→ A : G(u), in L2
(
RnT ,RN

)
as h→ 0. (3.5)

Further, for any fixed measurable set E ⊆ RnT with finite measure and any Φ ∈
Cc(RN×n1), by utilising (3.2), we may estimate∥∥∥Φ

(
D1,hu

)(
A:D1,hu − f

)∥∥∥
L1(E)

≤
√
|E| ‖Φ‖C(RN×n1 )

∥∥∥A : D1,hu − A : G(u)
∥∥∥
L2(RnT )

.
(3.6)

Hence, (3.5) and (3.6) imply

Φ
(
D1,hu

)(
A:D1,hu − f

)
−→ 0, in L1(E,RN ) as h→ 0. (3.7)

Moreover, the Carathéodory function

Ψ(x,X) :=
∣∣∣Φ(X)(A:X − f(x)

)∣∣∣χE(x) (3.8)

is an element of the space L1
(
RnT , C

(
RN×n1

))
(see Subsection 2.2), because

‖Ψ‖L1(RnT ,C(RN×n1 )) ≤ |E|
(

max
X∈supp(Φ)

∣∣Φ(X)A:X
∣∣)

+
√
|E|
(

max
X∈supp(Φ)

∣∣Φ(X)∣∣) ‖f‖L2(RnT ).

Let now (hν)∞1 ⊆ R\{0} be an infinitesimal sequence. Then, there is a subsequence

hνk → 0 such that (1.7) holds as k → ∞ (Subsection 2.2). By the weak*-strong

continuity of the duality pairing (2.1), (3.7) and (1.7), we have that∫
E

∣∣∣Φ(D1,hνku
)(

A:D1,hνku− f
)∣∣∣ =

∫
E

Ψ
(
·,D1,hνku

)
−→

∫
E

∫
RN×n1

Ψ
(
·, X

)
d[Du](X)

=

∫
E

∫
RN×n1

∣∣∣Φ(X)(A:X − f
)∣∣∣ d[Du](X),

(3.9)
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as k →∞. Then, (3.9) and (3.7) yield∫
RN×n1

∣∣∣Φ(X)(A:X − f(x)
)∣∣∣ d[Du(x)

]
(X) = 0, a.e. x ∈ E.

Since E ⊆ RnT is an arbitrary set of finite measure, Φ is an arbitrary function in

Cc(RN×n1) and Du an arbitrary diffuse gradient (Definition 1.1), it follows that u

is a D-solution on RnT , as desired.

Conversely, suppose that u is a D-solution in the fibre space (2.2). Then, for any

diffuse gradient Du and any Φ ∈ Cc(RN×n1), it follows that∫
RN×n1

Φ
(
X
)

d[Θ(x)](X) = 0, a.e. x ∈ RnT , (3.10)

where Θ : RnT −→ Mloc

(
RN×n1

)
is the weakly* measurable measure-valued map

defined by the formula

〈Θ(x),Φ〉 :=

∫
RN×n1

Φ(X)
(

A:X − f(x)
)

d
[
Du(x)

]
(X), (3.11)

for any Φ ∈ Cc(RN×n1) and a.e. x ∈ RnT . Evidently, for a.e. x ∈ RnT , the

measure Θ(x) is absolutely continuous with respect to the restriction measure

[Du(x)]xRN×n1 . From (3.11) and Definition 1.1 it follows that Θ = 0 a.e. on

RnT . This implies that a.e. on RnT , the support of [Du(x)]xRN×n1 lies in the closed

set

Lx :=
{
X ∈ RN×n1

∣∣∣ ∣∣A:X − f(x)
∣∣ = 0

}
.

Since Φ has compact support in RN×n1 , we infer that∫
RN×n1

∣∣Φ(X)∣∣ ∣∣∣A:X − f(x)
∣∣∣d[Du(x)

]
(X) = 0, (3.12)

for a.e. x ∈ RnT . By considering again the function Ψ of (3.8) and invoking (3.9)

and (3.12), we deduce that

lim
k→∞

∫
E

∣∣∣Φ(D1,hνku(x)
)(

A:D1,hνku(x)− f(x)
)∣∣∣dx = 0. (3.13)

We fix R > 0 and choose Φ ≥ χBR(0), where BR(0) is the closed R-ball of RN×n1

centred at the origin. Then, (3.13) gives

lim
k→∞

∫
E∩
{∣∣D1,hνk u

∣∣≤R}
∣∣∣A:D1,hνku(x)− f(x)

∣∣∣ dx = 0, (3.14)

for any R > 0. We set

ER := E ∩
{
x ∈ RnT

∣∣∣ Lx ∩ BR(0) 6= ∅
}

and

TR
(
x,X

)
:=

{
X, for

∣∣X∣∣ ≤ R, x ∈ ER
O(x), for

∣∣X∣∣ > R, x ∈ ER,
(3.15)
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where x 7→ O(x) is a measurable selection of the set-valued mapping with closed

non-empty values, given by

ER 3 x 7−→ Lx ∩ BR(0) ⊆ RN×n1 .

The fact that O is a measurable selection of the above set-valued map, means that

A : O(x) = f(x) and
∣∣O(x)

∣∣ ≤ R, a.e. x ∈ ER.

Such selections exist for large enough R > 0 by Aumann’s measurable selection

theorem (see e.g. [21]), although in this specific case they can also be constructed

explicitly. By using (3.15), (3.14) implies that

lim
k→∞

∫
ER

∣∣∣A : TR
(
x,D1,hνku(x)

)
− f(x)

∣∣∣ dx = 0

and by recalling (3.1), we rewrite this as

lim
k→∞

∫
ER

∣∣∣A : TR
(
x,Π D1,hνku(x)

)
− f(x)

∣∣∣dx = 0. (3.16)

Hence, (3.16) implies that∫
ER

∣∣∣A : G(u)− f
∣∣∣ ≤ ∫

ER

∣∣∣A : TR
(
·,Π D1,hνku

)
− f

∣∣∣
+

∫
ER

∣∣∣A : TR
(
·,Π D1,hνku

)
−A : G(u)

∣∣∣
≤ o(1) + |A|

∫
ER

∣∣∣TR(·,Π D1,hνku
)
−G(u)

∣∣∣
as k →∞, and as a consequence we have∫

ER

∣∣∣A : G(u)− f
∣∣∣ ≤ |A|∫

ER

∣∣∣TR(·,Π D1,hνku
)
− TR

(
·,G(u)

)∣∣∣
+ |A|

∫
ER

∣∣∣TR(·,G(u)
)
−G(u)

∣∣∣ + o(1),

(3.17)

as k →∞, for large R > 0. Moreover, by assumption u lies in the fibre space (2.2).

By invoking (3.5), the Dominated convergence theorem, the fact that |E| <∞ and

(3.15), we may pass to the limit in (3.17) as k →∞ to obtain∫
ER

∣∣∣A : G(u)− f
∣∣∣ ≤ |A|

∫
ER

∣∣∣TR(·,G(u)
)
− G(u)

∣∣∣,
for large R > 0. Finally, we may let R → ∞ and recall the arbitrariness of the set

E ⊆ RnT and (3.15) to infer that (3.2) holds. The lemma has been established. 2

The proof of Theorem 1.2 is now complete. 2

Remark 3.3 (Functional representation of diffuse derivatives). In a sense,

Lemma 3.2 says that all diffuse gradients, when restricted to the subspace of non-

degeneracies, have a “functional” representation inside the coefficients, given by

G(u). If we decompose RN×n1 as Π⊕Π⊥, the restriction of any Du to Π is given by
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G(u), in the sense that DuxΠ = δG(u), a.e. on RnT . This is a statement of partial

regularity type for D-solutions: although not all of the diffuse gradient is a Dirac

mass, certain restrictions of it on subspaces are concentration measures.

We conclude the paper with a linear algebra result, perhaps of independent in-

terest, in which we establish that the vector space Π of (1.9) has an orthonormal

basis consisting of rank-one matrices which can also be completed to an orthonor-

mal basis of rank-one matrices spanning RN×n1 , if the stronger hypothesis that

the matrices A1, ...,An commute is satisfied. In this case, though, (1.1) decouples

to N independent equations. Nonetheless, we still think that the result below is

interesting due to its connections to the degenerate elliptic systems of [29].

Lemma 3.4. In the setting of Subsection 2.5, if the matrices A1, ..,An commute,

RN×n1 has an orthonormal basis of rank-one matrices such that N -many span the

subspace Π and the rest Nn-many of them span its orthogonal complement N(A):

Π = span[
{
Eα0 |α

}
] , N(A) = span[

{
Eαi |α; i ≥ 1

}
]. (3.18)

In addition, the basis {Eαi|α; i} arises in the following way: there is an orthonormal

basis {E1, ..., EN} of RN and for each α an orthonormal basis {E(α)i| i} of Rn1 such

that Eαi = Eα ⊗ E(α)i.

Proof of Lemma 3.4. We begin by observing that from the definition of Π, we get

Π =
{
Y ∈ RN×n1

∣∣ Y0 · (−A:X) + Y :X = 0, ∀X ∈ RN×n
}
. (3.19)

By standard results in linear algebra ([39]), we obtain that the commutativity hy-

pothesis of the (symmetric) matrices {A1, ...,An} is equivalent to the requirement

that there exists an orthonormal basis {η1, ..., ηN} ⊆ RN which diagonalises all the

matrices {A1, ...,An} simultaneously, namely there is a common set of eigenvectors

for perhaps different eigenvalues {c(i)1, ..., c(i)N} of Ai. Thus,∑
γ

Aβγi η
α
γ = c(i)α ηαβ , ∀α, β; ∀ i,

whereas σ(Ai) = {c(i)1, ..., c(i)N}. We rewrite the above as

A:
(
ηα ⊗ ei

)
+
(
− c(i)α ηα

)
= 0, ∀α, β; ∀ i ≥ 1. (3.20)

We now define

Nαi := ηα ⊗
[
−c(i)α
ei

]
= ηα ⊗

([
− c(i)α, 0, ..., 0, 1, 0, ...0

]>
̂(1+i)-position

)
, (3.21)

for all α and i ≥ 1, and also

Nα0 := ηα ⊗
[

1

cα

]
= ηα ⊗

([
1, c(1)α, ..., c(n)α

]>)
, (3.22)

where cα := (c(1)α, ..., c(n)α)> is the α-th eigenvalue vector of {A1, ...,An}. The

definition of Nαi and (3.20) yield that A : Nαi = 0, for all α and i ≥ 1. Hence, Nαi ∈
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N(A). Moreover, by (3.19) and the fact that the Nn-many matrices {ηα ⊗ ei |α, i}
are an orthonormal basis of RN×n, we have that

Y ∈ Π ⇐⇒ Y0 · (−A:X) + Y :X = 0, X ∈ RN×n,
⇐⇒ Y0 ·

(
−A:(ηα ⊗ ei)

)
+ Y : (ηα ⊗ ei) = 0, ∀α; i ≥ 1,

(3.20)⇐⇒ Y0 ·
(
− c(i)αηα

)
+ Y : (ηα ⊗ ei) = 0, ∀α; i ≥ 1,

(3.21)⇐⇒ [Y0|Y ] : Nαi = 0, ∀α; i ≥ 1.

Hence, Y ⊥N(A) if and only if Y ⊥Nαi for all α and i ≥ 1. Since N(A) = Π⊥, this

shows that N(A) = span[
{
Nαi|α; i ≥ 1

}
]. Moreover, the matrices Nαi spanning

N(A) are linearly independent and hence exactly Nn-many. Indeed, we have

Nαi : Nβj =
(
ηα ⊗

[
−c(i)α
ei

])
:
(
ηβ ⊗

[
−c(i)β
ei

])
= δαβ

(
c(i)αc(j)β + δij

)
.

It follows that for any α 6= β, Nαi is orthogonal to Nβj . Moreover, for all α and

i 6= j in {1, ..., n}, (3.21) yields

Nαi

|Nαi|
:
Nαj

|Nαj |
=

c(i)αc(j)α√
1 + (c(i)α)2

√
1 + (c(j)α)2

∈ (−1,+1)

and hence for each α the set of matrices {Nαi| i} is linearly independent. Further,

by (3.21), (3.22) we have that

Nα0 : Nβi =
(
ηα ⊗

[
1

cα

])
:
(
ηβ ⊗

[
−c(i)β
ei

])
=
(
ηα · ηβ

){[
1, c(1)α, ..., c(n)α

]
·
[
− c(i)β , 0, ..., 0, 1, 0, ...0

]
̂(1+i)-position

}
= δαβ

(
−c(i)β + c(i)α

)
= 0,

for all α, β and i ≥ 1. Moreover, by (3.22) we have

Nα0 : Nβ0 =

(
ηα ⊗

[
1

cα

])
:

(
ηβ ⊗

[
1

cβ

])
= δαβ

(
1 + cα · cβ

)
and as a consequence the matrices {Nα0|α} form an orthogonal set of N -many

elements which is orthogonal to N(A). Since the dimension of the space is N +Nn,

all the above together with (3.19), (3.21), (3.22) prove that Π = span[
{
Nα0|α

}
].

We now show that the basis {Nαi|α; i} can be modified in order to be made

orthonormal and still consist of rank-one matrices. First note that the matrices

spanning Π are orthogonal and hence we only need to fix their length. Next, Π⊥

can be decomposed as the following direct sum of mutually orthogonal subspaces

Π⊥ =

N⊕
α=1

span[
{
Nαi

∣∣ i = 1, ..., n
}

] =:

N⊕
α=1

Wα.
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Since

Wα = ηα ⊗ span[

{[
−c(i)α
ei

]
: i ≥ 1

}
],

by the Gram-Schmidt method, we can find an orthonormal basis of Wα consisting

of matrices of the form Ñαi = ηα ⊗ a(α)i with a(α)i · a(α)j = δij . Finally, we define

Eα0 :=
Nα0

|Nα0|
= ηα ⊗

(
1√

1 + |cα|2

[
1

cα

])
∈ RN×n1 ,

Eαi := Ñαi = ηα ⊗ a(α)i ∈ RN×n1 ,

Eα := ηα ∈ RN ,

E(α)0 :=
1√

1 + |cα|2

[
1

cα

]
, E(α)i := a(α)i ∈ R1+n,

where α and i ≥ 1. By the previous it follows that {Eαi|α; i} is an orthonormal basis

of RN×n1 consisting or rank-one directions such that {Eα0|α} span the subspace

Π and {Eαi|α; i ≥ 1} span its complement Π⊥. Moreover, Eαi = Eα ⊗ E(α)i. 2
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