362 research outputs found

    Detection and measurement of planetary systems with GAIA

    Get PDF
    We use detailed numerical simulations and the Ï…\upsilon Andromedae, planetary system as a template to evaluate the capability of the ESA Cornerstone Mission GAIA in detecting and measuring multiple planets around solar-type stars in the neighborhood of the Solar System. For the outer two planets of the Ï…\upsilon Andromedae, system, GAIA high-precision global astrometric measurements would provide estimates of the full set of orbital elements and masses accurate to better than 1--10%, and would be capable of addressing the coplanarity issue by determining the true geometry of the system with uncertainties of order of a few degrees. Finally, we discuss the generalization to a variety of configurations of potential planetary systems in the solar neighborhood for which GAIA could provide accurate measurements of unique value for the science of extra-solar planets.Comment: 4 pages, 2 pictures, accepted for publication in A&A Letter

    A test of Gaia Data Release 1 parallaxes: implications for the local distance scale

    Full text link
    We present a comparison of Gaia Data Release 1 (DR1) parallaxes with photometric parallaxes for a sample of 212 Galactic Cepheids at a median distance of 2~kpc, and explore their implications on the distance scale and the local value of the Hubble constant H_0. The Cepheid distances are estimated from a recent calibration of the near-infrared Period-Luminosity P-L relation. The comparison is carried out in parallax space, where the DR1 parallax errors, with a median value of half the median parallax, are expected to be well-behaved. With the exception of one outlier, the DR1 parallaxes are in remarkably good global agreement with the predictions, and the published errors may be conservatively overestimated by about 20%. The parallaxes of 9 Cepheids brighter than G = 6 may be systematically underestimated, trigonometric parallaxes measured with the HST FGS for three of these objects confirm this trend. If interpreted as an independent calibration of the Cepheid luminosities and assumed to be otherwise free of systematic uncertainties, DR1 parallaxes would imply a decrease of 0.3% in the current estimate of the local Hubble constant, well within their statistical uncertainty, and corresponding to a value 2.5 sigma (3.5 sigma if the errors are scaled) higher than the value inferred from Planck CMB data used in conjunction with Lambda-CDM. We also test for a zeropoint error in Gaia parallaxes and find none to a precision of ~20 muas. We caution however that with this early release, the complete systematic properties of the measurements may not be fully understood at the statistical level of the Cepheid sample mean, a level an order of magnitude below the individual uncertainties. The early results from DR1 demonstrate again the enormous impact that the full mission will likely have on fundamental questions in astrophysics and cosmology.Comment: A&A, submitted, 6 pages, 3 figure

    Narrow-Angle Astrometry with the Space Interferometry Mission: The Search for Extra-Solar Planets. II. Detection and Characterization of Planetary Systems

    Full text link
    (Abridged) The probability of detecting additional companions is essentially unchanged with respect to the single-planet configurations, but after fitting and subtraction of orbits with astrometric signal-to-noise ratio α/σd→1\alpha/\sigma_d\to 1 the false detection rates can be enhanced by up to a factor 2; the periodogram approach results in robust multiple-planet detection for systems with periods shorter than the SIM mission length, even at low values of α/σd\alpha/\sigma_d, while the least squares technique combined with Fourier series expansions is arguably preferable in the long-period regime. The accuracy on multiple-planet orbit reconstruction and mass determination suffers a typical degradation of 30-40% with respect to single-planet solutions; mass and orbital inclination can be measured to better than 10% for periods as short as 0.1 yr, and for α/σd\alpha/\sigma_d as low as ∼5\sim 5, while α/σd≃100\alpha/\sigma_d\simeq 100 is required in order to measure with similar accuracy systems harboring objects with periods as long as three times the mission duration. For systems with all components producing α/σd≃10\alpha/\sigma_d\simeq 10 or greater, quasi-coplanarity can be reliably established with uncertainties of a few degrees, for periods in the range 0.1≤T≤150.1\leq T\leq 15 yr; in systems where at least one component has α/σd→1\alpha/\sigma_d\to 1, coplanarity measurements are compromised, with typical uncertainties on the mutual inclinations of order of 30∘−40∘30^\circ-40^\circ. Our findings are illustrative of the importance of the contribution SIM will make to the fields of formation and evolution of planetary systems.Comment: 61 pages, 14 figures, 5 tables, to appear in the September 2003 Issue of the Publications of the Astronomical Society of the Pacifi

    Testing Planet Formation Models with Gaia μ\muas Astrometry

    Full text link
    In this paper, we first summarize the results of a large-scale double-blind tests campaign carried out for the realistic estimation of the Gaia potential in detecting and measuring planetary systems. Then, we put the identified capabilities in context by highlighting the unique contribution that the Gaia exoplanet discoveries will be able to bring to the science of extrasolar planets during the next decade.Comment: 4 pages, 1 figure. To appear in the proceedings of "IAU Symposium 248 - A Giant Step: from Milli- to Micro-arcsecond Astrometry", held in Shanghai, China, 15-19 Oct. 200

    A Gaia Data Release 3 View on the Tip of the Red Giant Branch Luminosity

    Full text link
    The tip of the red giant branch (TRGB) is a standard candle that can be used to help refine the determination of the Hubble constant. GaiaGaia Data Release 3 (DR3) provides synthetic photometry constructed from low-resolution BP/RP spectra for Milky Way field stars that can be used to directly calibrate the luminosity of the TRGB in the Johnson-Cousins I band, where the TRGB is least sensitive to metallicity. We calibrate the TRGB luminosity using a two-dimensional maximum likelihood algorithm with field stars and GaiaGaia synthetic photometry and parallaxes. For a high-contrast and low-contrast break (characterized by the values of the contrast parameter R R or the magnitude of the break β \beta ), we find MITRGBM^{TRGB}_I =−4.02-4.02 and −3.92-3.92 mag respectively, or a midpoint of −3.970-3.970 −0.024+0.042^{+0.042} _{-0.024} (sys) ±\pm 0.0620.062 (stat) mag. This measurement improves upon the TRGB measurement from Li et al. (2022), as the higher precision photometry based on Gaia Gaia DR3 allows us to constrain two additional free parameters of the luminosity function. We also investigate the possibility of using GaiaGaia DR3 synthetic photometry to calibrate the TRGB luminosity with ω\omega Centauri, but find evidence of blending within the inner region for cluster member photometry that precludes accurate calibration with GaiaGaia DR3 photometry. We instead provide an updated TRGB measurement of mITRGBm^{TRGB}_I = 9.82±0.04 9.82 \pm 0.04 mag in ω\omega Centauri using ground-based photometry from the most recent version of the database described in Stetson et al. (2019), which gives MITRGBM^{TRGB}_I = −3.97-3.97 ±\pm 0.040.04 (stat) ±\pm 0.10 (sys) mag when tied to the GaiaGaia EDR3 parallax distance from the consensus of Vasiliev & Baumgardt (2021), Soltis et al. (2021), and Ma\'{i}z Apell\'{a}niz et al. (2022a).Comment: 17 pages, 10 figures, 3 tables. Accepted by Ap
    • …
    corecore