7,082 research outputs found

    Efficiency Optimization in Medium Power Wind Turbines: an Innovative Mechanical Pitch Control System

    Get PDF
    The paper illustrates the design of a new mechanical system for propeller blades pitch calibration in medium power wind turbines. The peculiarity of this system is its capacity of adjusting through a feedback control system, which allows the wind turbine to capture the maximum amount of energy from the wind. In this work an axial drive system was studied by means of racks capable of linearly adjusting the pitch of all wind turbine propeller blades in an intrinsically synchronous way, with an advantage over the traditional methods of propeller blades pitch calibration. For different wind speeds the system adjusts the blades angle of incidence in order to reduce the rotation speed and keep the system as close as possible to the pre-established design conditions generating maximum energy with a high efficiency. The manuscript examines the main analyses and simulations conducted during the design phase. These show that the proposed method allows to reach higher efficiencies with a greater intrinsic stability compared to the traditional pitch control mechanisms in medium power wind turbines. The experimental results on the first prototypes confirm the efficiency increase

    A new generation of bio-composite thermoplastic filaments for a more sustainable design of parts manufactured by FDM

    Get PDF
    The most recent developments of Fused Deposition Modelling (FDM) techniques are moving the application of Additive Manufacturing (AM) technologies toward new areas of investigation such as the biomedical, aerospace, and marine engineering in addition to the more consolidated industrial and civil fields. Some specific characteristics are required for the components designed for peculiar applications, such as complex geometries, lightweight, and high strength as well as breathability and aesthetic appearance specifically in the biomedical field. All these design specifications could be potentially satisfied by manufacturing with 3D printing techniques. Moreover, the development of purpose-dedicated filaments can be considered a key factor to successfully meet all the requirements. In this paper, fabrication and applications of five new thermoplastic materials with fillers are described and analyzed. They are organic bio-plastic compounds made of polylactic acid (PLA) and organic by-products. The growing interest in these new composite materials reinforced with organic by-products is due to the reduction of production management costs and their low environmental impact. In this study, the production workflow has been set up and described in detail. The main properties of these new thermoplastic materials have been analyzed with a major emphasis on strength, lightweight, and surface finish. The analysis showed that these materials can be particularly suitable for biomedical applications. Therefore, two different biomedical devices were selected and relative prototypes were manufactured with one of the analyzed thermoplastic materials. The feasibility, benefits, and performance of the thermoplastic material considered for these applications were successfully assessed

    Archaeogenetics and landscape dynamics in sicily during the holocene: A review

    Get PDF
    The Mediterranean islands and their population history are of considerable importance to the interpretation of the population history of Europe as a whole. In this context, Sicily, because of its geographic position, represents a bridge between Africa, the Near East, and Europe that led to the stratification of settlements and admixture events. The genetic analysis of extant and ancient human samples has tried to reconstruct the population dynamics associated with the cultural and demographic changes that took place during the prehistory and history of Sicily. In turn, genetic, demographic and cultural changes need to be understood in the context of the environmental changes that took place over the Holocene. Based on this framework, this paper aims to discuss the cultural and demographic dimension of the island by reviewing archaeogenetic studies, and lastly, we discuss the ecological constraints related to human peopling in times of change in landscapes that occurred on the island in various periods. Finally, possible directions for future archaeogenetic studies of Sicily are discussed. Despite its long human history, Sicily is still one of the world’s biodiversity hotspots. The lessons we learn from the past use of landscape provide models for sustainable future management of the Mediterranean’s landscapes

    A novel mutation in isoform 3 of the plasma membrane Ca2+ pump impairs cellular Ca2+ homeostasis in a patient with cerebellar ataxia and laminin subunit 1\u3b1 mutations.

    Get PDF
    The particular importance of Ca2+ signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca2+ ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca2+. A genetic defect of the function of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation of the PMCA3 pump (ATP2B3) in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca2+ ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca2+ transients generated by cell stimulation and impairs its Ca2+ extrusion function under conditions of low resting cytosolic Ca2+ as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca2+-bound state. The patient also carries two missense mutations in LAMA1, encoding for laminin subunit 1\u3b1. On the basis of the family pedigree of the patient, the presence of both PMCA3 and LAMA1 mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca2+ homeostasis and the previous finding that PMCAs act as digenic modulators in Ca2+-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype

    Low-temperature exsolution of Ni-Ru bimetallic nanoparticles from A-site deficient double perovskites

    Get PDF
    Exsolution of stable metallic nanoparticles for use as efficient electrocatalysts has been of increasing interest for a range of energy technologies. Typically, exsolved nanoparticles show higher thermal and coarsening stability compared to conventionally deposited catalysts. Here, A-site deficient double perovskite oxides, La2-xNiRuO6-δ (x = 0.1 and 0.15), are designed and subjected to low-temperature reduction leading to exsolution. The reduced double perovskite materials are shown to exsolve nanoparticles of 2–6 nm diameter during the reduction in the low-temperature range of 350–450 °C. The nanoparticle sizes are found to increase after reduction at the higher temperature (450 °C), suggesting diffusion-limited particle growth. Interestingly, both nickel and ruthenium are co-exsolved during the reduction process. The formation of bimetallic nanoparticles at such low temperatures is rare. From the in situ impedance spectroscopy measurements of the double perovskite electrode layers, the onset of the exsolution process is found to be within the first few minutes of the reduction reaction. In addition, the area-specific resistance of the electrode layers is found to decrease by 90% from 291 to 29 Ω cm2, suggesting encouraging prospects for these low-temperature rapidly exsolved Ni/Ru alloy nanoparticles in a range of catalytic applications

    Organelles: The Emerging Signalling Chart of Mitochondrial Dynamics

    Get PDF
    Many molecular and functional details of single events in mitochondrial dynamics have been reported, but little is known about their coordination. A recent study describes how cellular Ca2+ signals, via remodelling the actin cytoskeleton, synchronise the formation of endoplasmic reticulum–mitochondria contacts with inner and outer mitochondrial membrane fission

    Engineering and manufacturing of a dynamizable fracture fixation device system

    Get PDF
    The present work illustrates the dynamization of an orthopaedic plate for internal fracture fixation which is thought to shorten healing times and enhance the quality of the new formed bone. The dynamization is performed wirelessly thanks to a magnetic coupling. The paper shows the peculiarities of the design and manufacturing of this system: it involves two components, sliding with respect to each other with an uncertain coefficient of friction, and with a specific compounded geometry; there are stringent limits on component size, and on the required activation energy. Finally, the device belongs to medical devices and, as such, it must comply with the respective regulation (EU 2017/745, ASTM F382). The design of the dynamizable fracture fixation plate has required verifying the dynamic of the unlocking mechanism through the development of a parametric multibody model which has allowed us to fix the main design variables. As a second step, the fatigue strength of the device and the static strength of the whole bone-plate system was evaluated by finite element analysis. Both analyses have contributed to defining the final optimized geometry and the constitutive materials of the plate; finally, the respective working process was set up and its performance was tested experimentally on a reference fractured femur. As a result of these tests, the flexural stiffness of the bone-plate system resulted equal to 370 N/mm, while a maximum bending moment equal to 75.3 kNmm can be withstood without plate failure. On the whole, the performance of this dynamic plate was proved to be equal or superior to those measured for static plates already on the market, with excellent clinical results. At the same time, pre-clinical tests will be an interesting step of the future research, for which more prototypes are now being produced

    Stochastic PCA-based bone models from inverse transform sampling: Proof of concept for mandibles and proximal femurs

    Get PDF
    Principal components analysis is a powerful technique which can be used to reduce data dimensionality. With reference to three-dimensional bone shape models, it can be used to generate an unlimited number of models, defined by thousands of nodes, from a limited (less than twenty) number of scalars. The full procedure has been here described in detail and tested. Two databases were used as input data: the first database comprised 40 mandibles, while the second one comprised 98 proximal femurs. The “average shape” and principal components that were required to cover at least 90% of the whole variance were identified for both bones, as well as the statistical distributions of the respective principal components weights. Fifteen principal components sufficed to describe the mandibular shape, while nine components sufficed to describe the proximal femur morphology. A routine has been set up to generate any number of mandible or proximal femur geometries, according to the actual statistical shape distributions. The set-up procedure can be generalized to any bone shape given a sufficiently large database of the respective 3D shapes

    Syngas production, clean-up and wastewater management in a demo-scale fixed-bed updraft biomass gasification unit

    Get PDF
    This paper presents the experimental development at demonstration scale of an integrated gasification system fed with wood chips. The unit is based on a fixed-bed, updraft and air-blown gasifier-with a nominal capacity of 5 MWth-equipped with a wet scrubber for syngas clean-up and an integrated chemical and physical wastewater management system. Gasification performance, syngas composition and temperature profile are presented for the optimal operating conditions and with reference to two kinds of biomass used as primary fuels, i.e., stone pine and eucalyptus from local forests (combined heat and power generation from this kind of fuel represents a good opportunity to exploit distributed generation systems that can be part of a new energy paradigm in the framework of the circular economy). The gasification unit is characterised by a high efficiency (about 79-80%) and an operation stability during each test. Particular attention has been paid to the optimisation of an integrated double stage wastewater management system-which includes an oil skimmer and an activated carbon adsorption filter-designed to minimise both liquid residues and water make-up. The possibility to recycle part of the separated oil and used activated carbon to the gasifier has been also evaluated
    • …
    corecore