638 research outputs found
Anwendung einer an Möhren und Weizen standardisierten Biokristallisation auf Äpfel und Aloe vera
The biocrystallization method was standardised on carrot and wheat. With the standardised
method samples from different farming systems could be successfully discriminated.
For this paper, we investigated to what degree the standardised method
can be adapted to other product classes like apples or Aloe vera. We found, that the
sample preparation procedures must be developed for each new product whereas the
conditions for the steps evaporation and crystallization as well as the evaluation of the
patterns could be directly transferred. The variability as well as the factors of influence
could be compared to those found on carrot and wheat samples
Predicting the Impact of Alternative Splicing on Plant MADS Domain Protein Function
Several genome-wide studies demonstrated that alternative splicing (AS) significantly increases the transcriptome complexity in plants. However, the impact of AS on the functional diversity of proteins is difficult to assess using genome-wide approaches. The availability of detailed sequence annotations for specific genes and gene families allows for a more detailed assessment of the potential effect of AS on their function. One example is the plant MADS-domain transcription factor family, members of which interact to form protein complexes that function in transcription regulation. Here, we perform an in silico analysis of the potential impact of AS on the protein-protein interaction capabilities of MIKC-type MADS-domain proteins. We first confirmed the expression of transcript isoforms resulting from predicted AS events. Expressed transcript isoforms were considered functional if they were likely to be translated and if their corresponding AS events either had an effect on predicted dimerisation motifs or occurred in regions known to be involved in multimeric complex formation, or otherwise, if their effect was conserved in different species. Nine out of twelve MIKC MADS-box genes predicted to produce multiple protein isoforms harbored putative functional AS events according to those criteria. AS events with conserved effects were only found at the borders of or within the K-box domain. We illustrate how AS can contribute to the evolution of interaction networks through an example of selective inclusion of a recently evolved interaction motif in the MADS AFFECTING FLOWERING1-3 (MAF1–3) subclade. Furthermore, we demonstrate the potential effect of an AS event in SHORT VEGETATIVE PHASE (SVP), resulting in the deletion of a short sequence stretch including a predicted interaction motif, by overexpression of the fully spliced and the alternatively spliced SVP transcripts. For most of the AS events we were able to formulate hypotheses about the potential impact on the interaction capabilities of the encoded MIKC protein
Physicochemical characterization of Escherichia coli:A comparison with gram-positive bacteria
Eight Escherichia coli strains were characterized by determining their adhesion to xylene, surface free energy, zeta potential, relative surface charge, and their chemical composition. The latter was done by applying X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR). No relationship between the adhesion to xylene and the water contact angles of these strains was found. Three strains had significantly lower surface free energies than the other strains. Surface free energies were either obtained from polar and dispersion parts or from Lifshitz-van der Waals and acid/base parts of the surface free energy. A correlation (r=0.97) between the polar parts and the electron-donor contributions to the acid/base part of the surface free energy was found. The zeta potentials of all strains, measured as a function of pH (2–11), were negative. Depending on the zeta potential as a function of pH, three groups were recognized among the strains tested. A relationship (r=0.84) was found between the acid/base component of the surface free energy and the zeta potential measured at pH=7.4. There was no correlation between results of XPS and IR studies. Data from the literature of XPS and IR studies of the gram-positive staphylococci and streptococci were compared with data from the gram-negativeE. coli used in this study. It appeared that in these three groups of bacteria, the polysaccharide content detected by IR corresponded well with the oxygen-to-carbon ratio detected by XPS
Characterization of eukaryotic cell surfaces prior to and after serum protein adsorption by X-ray photoelectron spectroscopy - Fibroblasts, HELA epithelial, and smooth muscle cells
Elemental surface concentration ratios N/C, O/C, and P/C of fibroblasts, HELA epithelial cells, and smooth muscle cells, prior to and after washing in the absence or presence of serum proteins, were determined by X-ray photoelectron spectroscopy. Cell surfaces appeared to adsorb hardly any serum proteins, and the relatively high P/C, as compared to N/C and O/C, elemental surface concentration ratio indicated that the cell surfaces consisted mainly of the phospholipid bilayer, with little or no proteins present. The lack of adsorption of serum proteins to the cell surfaces seems at odds with the common notion that cells require adhesive proteins in order to adhere and spread. However, the adsorption behavior of cellularly produced proteins may be completely different, particularly since they seem to be able to displace adsorbed serum proteins from biomaterials surfaces. Interestingly, only HELA epithelial cells (a tumor cell line) appeared to adsorb a very small amount of proteins.</p
Influence of glutaraldehyde fixation of cells adherent to solid substrata on their detachment during exposure to shear stress
In order to determine the response of fixed and nonfixed cells adherent to a solid substratum to shear stress, human fibroblasts were allowed to adhere and spread on either hydrophilic glass or hydrophobic Fluoroethylene-propylene (FEP-Teflon) and fixed with glutaraldehyde. Then, the cells were exposed to an incrementally loaded shear stress in a parallel plate flow chamber up to shear stresses of about 500 dynes/cm2, followed by exposure to a liquid-air interface passage. The cellular detachment was compared with the one of nonfixed cells. In case of fixed cells, 50% of the adhering cells detached from FEP-Teflon at a shear stress of 350 dynes/cm2, whereas 50% of the adhering, nonfixed cells detached already at a shear stress of 20 dynes/cm2. No fixed cells detached from glass for shear stresses up to at least 500 dynes/cm2. More than 50% of the nonfixed cells were detached from glass at a shear stress of 350 dynes/cm2. Furthermore, the shape and morphology of fixed cells did not change during the incrementally loaded flow, in contrast to the ones of nonfixed cells, which clearly rounded up prior to detachment.</p
Scanning Electron Microscopy Study of Biofilms on Silicone Voice Prosthesis
Patients after laryngectomy often receive silicone made voice prostheses fot speech rehabilitation. The prosthesis is inserted in a shunt between the trachea and the digestive tract. As the prosthesis is placed in a nonsterile environment it becomes rapidly colonized by microorganisms eventually leading to failure and frequent exchange of the implant. In this study, explanted Groningen Button silicone voice prostheses were used to investigate by scanning electron microscopy the biofilm developing on the implant. Two main types of microbial colonization forms could be distinguished. Firstly, macroscopically visible, single colonies dominating on the esophagus side of the prosthesis were found, which were built up of mainly yeast cells. Secondly, thin microbial films on the areas in between were seen in which bacteria were the dominating organisms. In both colonization forms, mixed biofilms of mainly cocci and yeasts could also be found
How Do Bacteria Know They Are on a Surface and Regulate Their Response to an Adhering State?
Bacteria adhere to virtually all natural and synthetic surfaces [1,2]. Although there are a number of different reasons as to why bacteria adhere to a surface, the summarizing answer is brief: ‘‘Adhesion to a surface is a survival mechanism for bacteria’’. Nutrients in aqueous environments have the tendency to accumulate at surfaces [1,3], giving adhering bacteria a benefit over free floating, so-called planktonic ones. This is why mountain creeks may contain crystal clear, drinkable water, while stepping stones underneath the water may be covered with a slippery film of adhering microbes. In the oral cavity, adhesion to dental hard and soft tissues is life-saving to the organisms, because microbes that do not manage to adhere and remain planktonic in saliva are swallowed with an almost certain death in the gastrointestinal tract. Bacterial adhesion is generally recognized as the first step in biofilm formation, and for the human host, the ability of
The growth of different body length dimensions is not predictive for the peak growth velocity of sitting height in the individual child
The aim of this study was to determine whether the differences in timing of the peak growth velocity (PGV) between sitting height, total body height, subischial leg length, and foot length can be used to predict whether the individual patient with adolescent idiopathic scoliosis is before or past his or her PGV of sitting height. Furthermore, ratios of growth of different body parts were considered in order to determine their value in prediction of the PGV of sitting height in the individual patient. Ages of the PGV were determined for sitting height (n = 360), total body height (n = 432), subischial leg length (n = 357), and foot length (n = 263), and compared for the whole group and for the individual child in particular. Furthermore, the ages of the highest and lowest ratios between the body length dimensions were determined and compared to the age of the PGV of sitting height. The mean ages of the highest and lowest ratios were significantly different from the mean age of the PGV of sitting height in 3 out of 12 ratios in girls and 8 out of 12 ratios in boys. The variation over children was large and the ratios were too small, leading to a too large influence of measurement errors. The mean ages of the PGV all differed significantly from the mean age of the PGV of sitting height. However, the variation over individual children of the age differences in PGV between body dimensions was large, and the differences in timing of the PGV were not useful to predict whether the individual child is before or past his or her PGV of sitting height
- …