1,975 research outputs found

    How galaxies lose their angular momentum

    Full text link
    The processes are investigated by which gas loses its angular momentum during the protogalactic collapse phase, leading to disk galaxies that are too compact with respect to the observations. High-resolution N-body/SPH simulations in a cosmological context are presented including cold gas and dark matter. A halo with quiet merging activity since z~3.8 and with a high spin parameter is analysed that should be an ideal candidate for the formation of an extended galactic disk. We show that the gas and the dark matter have similar specific angular momenta until a merger event occurs at z~2 with a mass ratio of 5:1. All the gas involved in the merger loses a substantial fraction of its specific angular momentum due to tidal torques and falls quickly into the center. Dynamical friction plays a minor role,in contrast to previous claims. In fact, after this event a new extended disk begins to form from gas that was not involved in the 5:1 merger event and that falls in subsequently. We argue that the angular momentum problem of disk galaxy formation is a merger problem: in cold dark matter cosmology substantial mergers with mass ratios of 1:1 to 6:1 are expected to occur in almost all galaxies. We suggest that energetic feedback processes could in principle solve this problem, however only if the heating occurs at the time or shortly before the last substantial merger event. Good candidates for such a coordinated feedback would be a merger-triggered star burst or central black hole heating. If a large fraction of the low angular momentum gas would be ejected as a result of these processes, late-type galaxies could form with a dominant extended disk component, resulting from late infall, a small bulge-to-disk ratio and a low baryon fraction, in agreement with observations.Comment: 7 pages, 5 figures, submitted to MNRAS. Request for high resolution figures to the author

    Electroexcitation of nucleon resonances at Q^2=0.65 GeV/c^2 from a combined analysis of single- and double-pion electroproduction data

    Full text link
    Data on single- and double-charged pion electroproduction off protons are successfully described in the second and third nucleon resonance regions with common N* photocouplings. The analysis was carried out using separate isobar models for both reactions. From the combined analysis of two exclusive channels, the gamma* p --> N*+ helicity amplitudes are obtained for the resonances P11(1440), D13(1520), S31(1620), S11(1650), F15(1680), D33(1700), D13(1700), and P13(1720) at Q2=0.65 GeV/c^2.Comment: 12 pages, 12 figures (eps), Published in PHYSICAL REVIEW C 72, 045201 (2005

    Indirect Signals from Dark Matter in Split Supersymmetry

    Full text link
    We study the possibilities for the indirect detection of dark matter in Split Supersymmetry from gamma-rays, positrons, and antiprotons. The most promising signal is the gamma-ray line, which may be observable at the next generation of detectors. For certain halo profiles and a high mass neutralino, the line can even be visible in current experiments. The continuous gamma-ray signal may be observable, if there is a central spike in the galactic halo density. The signals are found to be similar to those in MSSM models. These indirect signals complement other experiments, being most easily observable for regions of parameter space, such as heavy wino and higgsino dominated neutralinos, which are least accessible for direct detection and accelerator searches.Comment: 10 pages, 5 figures; experimental sensitivities added to figure 2, revised version to appear in Phys. Rev.

    A New Concept of Transonic Galactic Outflows in a Cold Dark Matter Halo with a Central Super-Massive Black Hole

    Full text link
    We study fundamental properties of isothermal, steady and spherically symmetric galactic outflow in the gravitational potential of a cold dark matter halo and a central super-massive black hole. We find that there are two transonic solutions having different properties: each solution is mainly produced by the dark matter halo and the super-massive black hole, respectively. Furthermore, we apply our model to the Sombrero galaxy. In this galaxy, Chandra X-ray observatory detected the diffuse hot gas as the trace of galactic outflows while the star-formation rate is low and the observed gas density distribution presumably indicates the hydrostatic equilibrium. To solve this discrepancy, we propose a solution that this galaxy has a transonic outflow, however, the transonic point forms in a very distant region from the galactic center (?∌\sim 127 kpc). In this slowly accelerated transonic outflow, the outflow velocity is less than the sound velocity for most of the galactic halo. Since the gas density distribution in this subsonic region is similar to the hydrostatic one, it is difficult to distinguish the wide subsonic region from hydrostatic state. Such galactic outflows are dfferent from the conventional supersonic outflows observed in star-forming galaxies.Comment: 7 pages, 3 figures, accepted for publication in JPS Conference Proceedings. arXiv admin note: substantial text overlap with arXiv:1405.345
    • 

    corecore