279 research outputs found

    Theory of continuum percolation I. General formalism

    Full text link
    The theoretical basis of continuum percolation has changed greatly since its beginning as little more than an analogy with lattice systems. Nevertheless, there is yet no comprehensive theory of this field. A basis for such a theory is provided here with the introduction of the Potts fluid, a system of interacting ss-state spins which are free to move in the continuum. In the s1s \to 1 limit, the Potts magnetization, susceptibility and correlation functions are directly related to the percolation probability, the mean cluster size and the pair-connectedness, respectively. Through the Hamiltonian formulation of the Potts fluid, the standard methods of statistical mechanics can therefore be used in the continuum percolation problem.Comment: 26 pages, Late

    Theory of continuum percolation II. Mean field theory

    Full text link
    I use a previously introduced mapping between the continuum percolation model and the Potts fluid to derive a mean field theory of continuum percolation systems. This is done by introducing a new variational principle, the basis of which has to be taken, for now, as heuristic. The critical exponents obtained are β=1\beta= 1, γ=1\gamma= 1 and ν=0.5\nu = 0.5, which are identical with the mean field exponents of lattice percolation. The critical density in this approximation is \rho_c = 1/\ve where \ve = \int d \x \, p(\x) \{ \exp [- v(\x)/kT] - 1 \}. p(\x) is the binding probability of two particles separated by \x and v(\x) is their interaction potential.Comment: 25 pages, Late

    Microscopic Model of Charge Carrier Transfer in Complex Media

    Full text link
    We present a microscopic model of a charge carrier transfer under an action of a constant electric field in a complex medium. Generalizing previous theoretical approaches, we model the dynamical environment hindering the carrier motion by dynamic percolation, i.e., as a medium comprising particles which move randomly on a simple cubic lattice, constrained by hard-core exclusion, and may spontaneously annihilate and re-appear at some prescribed rates. We determine analytically the density profiles of the "environment" particles, as seen from the stationary moving charge carrier, and calculate its terminal velocity as the function of the applied field and other system parameters. We realize that for sufficiently small external fields the force exerted on the carrier by the "environment" particles shows a viscous-like behavior and define an analog of the Stokes formula for such dynamic percolative environments. The corresponding friction coefficient is also derived.Comment: appearing in Chem. Phys. Special Issue on Molecular Charge Transfer in Condensed Media - from Physics and Chemistry to Biology and Nano-Engineering, edited by A.Kornyshev (Imperial College London), M.Newton (Brookhaven Natl Lab) and J.Ulstrup (Technical University of Denmark

    Treatment of poor-risk myelodysplastic syndromes and acute myeloid leukemia with a combination of 5-azacytidine and valproic acid

    Get PDF
    5-azacytidine (AZA) has become standard treatment for patients with higher-risk myelodysplastic syndrome (MDS). Response rate is about 50% and response duration is limited. Histone deactylase (HDAC) inhibitors are attractive partners for epigenetic combination therapy. We treated 24 patients with AZA (100 mg/m2, 5 days) plus valproate (VPA; continuous dosing, trough serum level 80–110 μg/ml). According to WHO classification, 5 patients had MDS, 2 had MDS/MPD, and 17 had acute myeloid leukemia (AML). Seven patients (29%) had previously received intensive chemotherapy, and five had previous HDAC inhibitor treatment. The overall response rate was 37% in the entire cohort but significantly higher (57%) in previously untreated patients, especially those with MDS (64%). Seven (29%) patients achieved CR (29%) and two PR (8%), respectively. Hematological CR was accompanied by complete cytogenetic remission according to conventional cytogenetics in all evaluable cases. Some patients also showed complete remission according to FISH on bone marrow mononuclear cells and CD34+ peripheral blood cells, as well as by follow-up of somatic mitochondrial DNA mutations. Four additional patients achieved at least marrow remissions. Factors influencing response were AML (vs. MDS), marrow blast count, pretreatment, transfusion dependency, concomitant medication with hydroxyurea, and valproic acid (VPA) serum level. This trial is the first to assess the combination of AZA plus VPA without additional ATRA. A comparatively good CR rate, relatively short time to response, and the influence of VPA serum levels on response suggest that VPA provided substantial additional benefit. However, the importance of HDAC inhibitors in epigenetic combination therapy can only be proven by randomized trials

    Se Nanopowder Conversion into Lubricious 2D Selenide Layers by Tribochemical Reactions

    Get PDF
    : Transition metal dichalcogenide (TMD) coatings have attracted enormous scientific and industrial interest due to their outstanding tribological behavior. The paradigmatic example is MoS2 , even though selenides and tellurides have demonstrated superior tribological properties. Here, an innovative in operando conversion of Se nanopowders into lubricious 2D selenides, by sprinkling them onto sliding metallic surfaces coated with Mo and W thin films, is described. Advanced material characterization confirms the tribochemical formation of a thin tribofilm containing selenides, reducing the coefficient of friction down to below 0.1 in ambient air, levels typically reached using fully formulated oils. Ab initio molecular dynamics simulations under tribological conditions reveal the atomistic mechanisms that result in the shear-induced synthesis of selenide monolayers from nanopowders. The use of Se nanopowder provides thermal stability and prevents outgassing in vacuum environments. Additionally, the high reactivity of the Se nanopowder with the transition metal coating in the conditions prevailing in the contact interface yields highly reproducible results, making it particularly suitable for the replenishment of sliding components with solid lubricants, avoiding the long-lasting problem of TMD-lubricity degradation caused by environmental molecules. The suggested straightforward approach demonstrates an unconventional and smart way to synthesize TMDs in operando and exploit their friction- and wear-reducing impact

    Theory of continuum percolation III. Low density expansion

    Full text link
    We use a previously introduced mapping between the continuum percolation model and the Potts fluid (a system of interacting s-states spins which are free to move in the continuum) to derive the low density expansion of the pair connectedness and the mean cluster size. We prove that given an adequate identification of functions, the result is equivalent to the density expansion derived from a completely different point of view by Coniglio et al. [J. Phys A 10, 1123 (1977)] to describe physical clustering in a gas. We then apply our expansion to a system of hypercubes with a hard core interaction. The calculated critical density is within approximately 5% of the results of simulations, and is thus much more precise than previous theoretical results which were based on integral equations. We suggest that this is because integral equations smooth out overly the partition function (i.e., they describe predominantly its analytical part), while our method targets instead the part which describes the phase transition (i.e., the singular part).Comment: 42 pages, Revtex, includes 5 EncapsulatedPostscript figures, submitted to Phys Rev

    Generalized model for dynamic percolation

    Full text link
    We study the dynamics of a carrier, which performs a biased motion under the influence of an external field E, in an environment which is modeled by dynamic percolation and created by hard-core particles. The particles move randomly on a simple cubic lattice, constrained by hard-core exclusion, and they spontaneously annihilate and re-appear at some prescribed rates. Using decoupling of the third-order correlation functions into the product of the pairwise carrier-particle correlations we determine the density profiles of the "environment" particles, as seen from the stationary moving carrier, and calculate its terminal velocity, V_c, as the function of the applied field and other system parameters. We find that for sufficiently small driving forces the force exerted on the carrier by the "environment" particles shows a viscous-like behavior. An analog Stokes formula for such dynamic percolative environments and the corresponding friction coefficient are derived. We show that the density profile of the environment particles is strongly inhomogeneous: In front of the stationary moving carrier the density is higher than the average density, ρs\rho_s, and approaches the average value as an exponential function of the distance from the carrier. Past the carrier the local density is lower than ρs\rho_s and the relaxation towards ρs\rho_s may proceed differently depending on whether the particles number is or is not explicitly conserved.Comment: Latex, 32 pages, 4 ps-figures, submitted to PR

    Transitions in the Horizontal Transport of Vertically Vibrated Granular Layers

    Full text link
    Motivated by recent advances in the investigation of fluctuation-driven ratchets and flows in excited granular media, we have carried out experimental and simulational studies to explore the horizontal transport of granular particles in a vertically vibrated system whose base has a sawtooth-shaped profile. The resulting material flow exhibits novel collective behavior, both as a function of the number of layers of particles and the driving frequency; in particular, under certain conditions, increasing the layer thickness leads to a reversal of the current, while the onset of transport as a function of frequency occurs gradually in a manner reminiscent of a phase transition. Our experimental findings are interpreted here with the help of extensive, event driven Molecular Dynamics simulations. In addition to reproducing the experimental results, the simulations revealed that the current may be reversed as a function of the driving frequency as well. We also give details about the simulations so that similar numerical studies can be carried out in a more straightforward manner in the future.Comment: 12 pages, 18 figure
    corecore