4,886 research outputs found

    A nonperturbative calculation of the electron's magnetic moment

    Full text link
    In principle, the complete spectrum and bound-state wave functions of a quantum field theory can be determined by finding the eigenvalues and eigensolutions of its light-cone Hamiltonian. One of the challenges in obtaining nonperturbative solutions for gauge theories such as QCD using light-cone Hamiltonian methods is to renormalize the theory while preserving Lorentz symmetries and gauge invariance. For example, the truncation of the light-cone Fock space leads to uncompensated ultraviolet divergences. We present two methods for consistently regularizing light-cone-quantized gauge theories in Feynman and light-cone gauges: (1) the introduction of a spectrum of Pauli-Villars fields which produces a finite theory while preserving Lorentz invariance; (2) the augmentation of the gauge-theory Lagrangian with higher derivatives. In the latter case, which is applicable to light-cone gauge (A^+ = 0), the A^- component of the gauge field is maintained as an independent degree of freedom rather than a constraint. Finite-mass Pauli-Villars regulators can also be used to compensate for neglected higher Fock states. As a test case, we apply these regularization procedures to an approximate nonperturbative computation of the anomalous magnetic moment of the electron in QED as a first attempt to meet Feynman's famous challenge.Comment: 35 pages, elsart.cls, 3 figure

    Perturbative QCD and factorization of coherent pion photoproduction on the deuteron

    Full text link
    We analyze the predictions of perturbative QCD for pion photoproduction on the deuteron, gamma D -> pi^0 D, at large momentum transfer using the reduced amplitude formalism. The cluster decomposition of the deuteron wave function at small binding only allows the nuclear coherent process to proceed if each nucleon absorbs an equal fraction of the overall momentum transfer. Furthermore, each nucleon must scatter while remaining close to its mass shell. Thus the nuclear photoproduction amplitude, M_{gamma D -> pi^0 D}(u,t), factorizes as a product of three factors: (1) the nucleon photoproduction amplitude, M_{gamma N_1 -> pi^0 N_1}(u/4,t/4), at half of the overall momentum transfer, (2) a nucleon form factor, F_{N_2}(t/4), at half the overall momentum transfer, and (3) the reduced deuteron form factor, f_d(t), which according to perturbative QCD, has the same monopole falloff as a meson form factor. A comparison with the recent JLAB data for gamma D -> pi^0 D of Meekins et al. [Phys. Rev. C 60, 052201 (1999)] and the available gamma p -> pi^0 p data shows good agreement between the perturbative QCD prediction and experiment over a large range of momentum transfers and center of mass angles. The reduced amplitude prediction is consistent with the constituent counting rule, p^11_T M_{gamma D -> pi^0 D} -> F(theta_cm), at large momentum transfer. This is found to be consistent with measurements for photon lab energies E_gamma > 3 GeV at theta_cm=90 degrees and \elab > 10 GeV at 136 degrees.Comment: RevTeX 3.1, 17 pages, 6 figures; v2: incorporates minor changes as version accepted by Phys Rev

    Hadron Spectroscopy and Wavefunctions in QCD and the AdS/CFT Correspondence

    Full text link
    The AdS/CFT correspondence has led to important insights into the properties of quantum chromodynamics even though QCD is a broken conformal theory. A holographic model based on a truncated AdS space can be used to obtain the hadronic spectrum of light qqˉ,qqqq \bar q, qqq and gggg bound states. Specific hadrons are identified by the correspondence of string modes with the dimension of the interpolating operator of the hadron's valence Fock state, including orbital angular momentum excitations. The predicted mass spectrum is linear M∝LM \propto L at high orbital angular momentum. Since only one parameter, the QCD scale ΛQCD\Lambda_{QCD}, is introduced, the agreement with the pattern of physical states is remarkable. In particular, the ratio of Δ\Delta to nucleon trajectories is determined by the ratio of zeros of Bessel functions. One can also use the extended AdS/CFT space-time theory to obtain a model for hadronic light-front wavefunctions, thus providing a relativistic description of hadrons in QCD at the amplitude level. The model wavefunctions display confinement at large inter-quark separation and conformal symmetry at short distances. In particular, the scaling and conformal properties of the LFWFs at high relative momenta agree with perturbative QCD. These AdS/CFT model wavefunctions could be used as an initial ansatz for a variational treatment of the light-front QCD Hamiltonian. Hadron form factors in both the space-like and time-like regions are also predicted.Comment: Invited Talk, presented presented at the XI. International Conference on Hadron Spectroscopy--HADRON 05,Rio de Janeiro, Brazil, 21-26 August 200

    Hadron Spin Dynamics

    Get PDF
    Spin effects in exclusive and inclusive reactions provide an essential new dimension for testing QCD and unraveling hadron structure. Remarkable new experiments from SLAC, HERMES (DESY), and the Jefferson Laboratory present many challenges to theory, including measurements at HERMES and SMC of the single spin asymmetries in pion electroproduction, where the proton is polarized normal to the scattering plane. This type of single spin asymmetry may be due to the effects of rescattering of the outgoing quark on the spectators of the target proton, an effect usually neglected in conventional QCD analyses. Many aspects of spin, such as single-spin asymmetries and baryon magnetic moments are sensitive to the dynamics of hadrons at the amplitude level, rather than probability distributions. I illustrate the novel features of spin dynamics for relativistic systems by examining the explicit form of the light-front wavefunctions for the two-particle Fock state of the electron in QED, thus connecting the Schwinger anomalous magnetic moment to the spin and orbital momentum carried by its Fock state constituents and providing a transparent basis for understanding the structure of relativistic composite systems and their matrix elements in hadronic physics. I also present a survey of outstanding spin puzzles in QCD, particularly the double transverse spin asymmetry A_{NN} in elastic proton-proton scattering, the J/psi to rho-pi puzzle, and J/psi polarization at the Tevatron.Comment: Concluding theory talk presented at SPIN2001, the Third Circum-Pan-Pacific Symposium on High Energy Physics, October, 2001, Beijin

    How the nuclear Fermi motion plus a simple statistical model explains the EMC effect

    Get PDF
    We present calculation of influence caused by nucleon Fermi motion on the parton distributions in nuclei. Our approach is based on the model where momenta of valence partons have some primordial distribution inside the hadron at rest, which is either provided by a statistical considerations or calculated using spherically symmetric Gaussian distribution with a width derived from the Heisenberg uncertainty relation. The sea parton contribution emerges from the similar Gaussian distribution with a width dictated by the presence of virtual pions in hadron. We show that the influence of Fermi motion changes substantially the nucleonic structure function inside the nucleus in the right direction and therefore should be considered seriously in all attempts devoted to explain the experimentally observed EMC effect for xBj>0.1x_{Bj} > 0.1.Comment: Contribution to PANIC 2002 conference, Sept. 30 - October 4, 2002, Osaka, Japan. Some misprints correcte

    Classical sum rules and spin correlations in photoabsorption and photoproduction processes

    Get PDF
    In this paper we study the possibility of generalizing the classical photoabsorption (Îła→bc\gamma a \to b c) sum rules, to processes bc→γab c \to \gamma a and crossed helicity amplitudes. In the first case, using detailed balance, the sum rule is written as ∫Μth∞dΜΜKΔσBorn(Îœ)=0\int_{\nu_{th}}^\infty {\frac{{d\nu}}{\nu}} K\Delta \sigma_{Born} (\nu)=0 where KK is a kinematical constant which depends only on the mass of the particles and the center of mass energy. For other crossed helicity amplitudes, we show that there is a range of values of ss and tt for which the differential cross section for the process Îłb→ac\gamma b \to a c or ac→γba c \to \gamma b in which the helicities of the photon and particle aa have specific values, is equal to the differential cross section for the process in which one of these two helicities is reversed (parallel-antiparallel spin correlation).Comment: 9 pages, 2 figure

    Structure Functions are not Parton Probabilities

    Get PDF
    The common view that structure functions measured in deep inelastic lepton scattering are determined by the probability of finding quarks and gluons in the target is not correct in gauge theory. We show that gluon exchange between the fast, outgoing partons and target spectators, which is usually assumed to be an irrelevant gauge artifact, affects the leading twist structure functions in a profound way. This observation removes the apparent contradiction between the projectile (eikonal) and target (parton model) views of diffractive and small x_{Bjorken} phenomena. The diffractive scattering of the fast outgoing quarks on spectators in the target causes shadowing in the DIS cross section. Thus the depletion of the nuclear structure functions is not intrinsic to the wave function of the nucleus, but is a coherent effect arising from the destructive interference of diffractive channels induced by final state interactions. This is consistent with the Glauber-Gribov interpretation of shadowing as a rescattering effect.Comment: 35 pages, 8 figures. Discussion of physical consequences of final state interactions amplified. Material on light-cone gauge choices adde

    Light-Cone Quantization and Hadron Structure

    Get PDF
    In this talk, I review the use of the light-cone Fock expansion as a tractable and consistent description of relativistic many-body systems and bound states in quantum field theory and as a frame-independent representation of the physics of the QCD parton model. Nonperturbative methods for computing the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock state representation of hadrons also describes quantum fluctuations containing intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden color". Fock state components of hadrons with small transverse size, such as those which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions; i.e., "color transparency". The use of light-cone Fock methods to compute loop amplitudes is illustrated by the example of the electron anomalous moment in QED. In other applications, such as the computation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to [email protected]

    Application of the Principle of Maximum Conformality to Top-Pair Production

    Full text link
    A major contribution to the uncertainty of finite-order perturbative QCD predictions is the perceived ambiguity in setting the renormalization scale ÎŒr\mu_r. For example, by using the conventional way of setting ÎŒr∈[mt/2,2mt]\mu_r \in [m_t/2,2m_t], one obtains the total ttˉt \bar{t} production cross-section σttˉ\sigma_{t \bar{t}} with the uncertainty \Delta \sigma_{t \bar{t}}/\sigma_{t \bar{t}}\sim ({}^{+3%}_{-4%}) at the Tevatron and LHC even for the present NNLO level. The Principle of Maximum Conformality (PMC) eliminates the renormalization scale ambiguity in precision tests of Abelian QED and non-Abelian QCD theories. In this paper we apply PMC scale-setting to predict the ttˉt \bar t cross-section σttˉ\sigma_{t\bar{t}} at the Tevatron and LHC colliders. It is found that σttˉ\sigma_{t\bar{t}} remains almost unchanged by varying ÎŒrinit\mu^{\rm init}_r within the region of [mt/4,4mt][m_t/4,4m_t]. The convergence of the expansion series is greatly improved. For the (qqˉ)(q\bar{q})-channel, which is dominant at the Tevatron, its NLO PMC scale is much smaller than the top-quark mass in the small xx-region, and thus its NLO cross-section is increased by about a factor of two. In the case of the (gg)(gg)-channel, which is dominant at the LHC, its NLO PMC scale slightly increases with the subprocess collision energy s\sqrt{s}, but it is still smaller than mtm_t for sâ‰Č1\sqrt{s}\lesssim 1 TeV, and the resulting NLO cross-section is increased by ∌20\sim 20%. As a result, a larger σttˉ\sigma_{t\bar{t}} is obtained in comparison to the conventional scale-setting method, which agrees well with the present Tevatron and LHC data. More explicitly, by setting mt=172.9±1.1m_t=172.9\pm 1.1 GeV, we predict σTevatron,  1.96 TeV=7.626−0.257+0.265\sigma_{\rm Tevatron,\;1.96\,TeV} = 7.626^{+0.265}_{-0.257} pb, σLHC,  7 TeV=171.8−5.6+5.8\sigma_{\rm LHC,\;7\,TeV} = 171.8^{+5.8}_{-5.6} pb and σLHC,  14 TeV=941.3−26.5+28.4\sigma_{\rm LHC,\;14\,TeV} = 941.3^{+28.4}_{-26.5} pb. [full abstract can be found in the paper.]Comment: 15 pages, 11 figures, 5 tables. Fig.(9) is correcte
    • 

    corecore