The common view that structure functions measured in deep inelastic lepton
scattering are determined by the probability of finding quarks and gluons in
the target is not correct in gauge theory. We show that gluon exchange between
the fast, outgoing partons and target spectators, which is usually assumed to
be an irrelevant gauge artifact, affects the leading twist structure functions
in a profound way. This observation removes the apparent contradiction between
the projectile (eikonal) and target (parton model) views of diffractive and
small x_{Bjorken} phenomena. The diffractive scattering of the fast outgoing
quarks on spectators in the target causes shadowing in the DIS cross section.
Thus the depletion of the nuclear structure functions is not intrinsic to the
wave function of the nucleus, but is a coherent effect arising from the
destructive interference of diffractive channels induced by final state
interactions. This is consistent with the Glauber-Gribov interpretation of
shadowing as a rescattering effect.Comment: 35 pages, 8 figures. Discussion of physical consequences of final
state interactions amplified. Material on light-cone gauge choices adde